• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 2
  • 2
  • Tagged with
  • 26
  • 9
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A sizing and vehicle matching methodology for boundary layer ingesting propulsion systems

Gladin, Jonathan Conrad 07 January 2016 (has links)
Boundary layer ingesting (BLI) propulsion systems offer potential fuel burn reduction for civil aviation and synergize with new advanced airframe concepts. However, the distorted inlet flow for BLI systems can cause performance and stability margin loss. System level analyses generally size a single engine at a fixed design point which ignores the distributed nature of many BLI architectures. Furthermore, operability and performance during o design are generally not considered during the sizing process. In this thesis, a methodology is developed for multi-design point sizing of BLI propulsion systems for specific vehicle geometry including an operability constraint. The methodology is applied to a 300 passenger hybrid-wing body vehicle with embedded turbofan engines. The methodology required investigations into three main areas of research. The first was the modeling of BLI impacts over a range of flight conditions. A BLI analysis tool was developed which models the vehicle boundary layer, pre-entry region, inlet, and fan losses throughout the entire flight envelope. An experiment investigating the impact of the modeling approach is conducted, and results show that proper mapping of the fan, inlet, and BLI propulsive benefit is crucially important for making proper design decisions. The impact of BLI on the system was found to vary significantly during o ff design and especially with changes in vehicle angle of attack. The operability constraint is investigated using a parallel compressor model and was found to place a minimum limit on the propulsor height. The second area of investigation was the creation of a multi-propulsor sizing methodology which accounts for diff erences between propulsors during flight that is induced by their interaction with the vehicle. A modified multi-design point approach was used which employs a set of design and power management rules to relate the operation of the propulsors. A performance comparison of this methodology with the standard single propulsor approach showed a signicant difference. The final area of investigation was the determination of critical o ff-design conditions for the sizing procedure. A screening process is developed which tests all off -design conditions for a subset of the design space to find conditions which are stall margin or thrust deficient. The experiment showed that it is necessary to consider the high angle of attack take-off condition during sizing for the HWB vehicle and that a variable area nozzle is required to meet the operability constraint. A follow on experiment showed that the inclusion of this point reduced the achievable fuel burn benefit for more aggressive BLI designs.Boundary layer ingesting (BLI) propulsion systems offer potential fuel burn reduction for civil aviation and synergize with new advanced airframe concepts. However, the distorted inlet flow for BLI systems can cause performance and stability margin loss. System level analyses generally size a single engine at a fixed design point which ignores the distributed nature of many BLI architectures. Furthermore, operability and performance during o design are generally not considered during the sizing process. In this thesis, a methodology is developed for multi-design point sizing of BLI propulsion systems for specific vehicle geometry including an operability constraint. The methodology is applied to a 300 passenger hybrid-wing body vehicle with embedded turbofan engines. The methodology required investigations into three main areas of research. The first was the modeling of BLI impacts over a range of flight conditions. A BLI analysis tool was developed which models the vehicle boundary layer, pre-entry region, inlet, and fan losses throughout the entire flight envelope. An experiment investigating the impact of the modeling approach is conducted, and results show that proper mapping of the fan, inlet, and BLI propulsive benefit is crucially important for making proper design decisions. The impact of BLI on the system was found to vary significantly during o ff design and especially with changes in vehicle angle of attack. The operability constraint is investigated using a parallel compressor model and was found to place a minimum limit on the propulsor height. The second area of investigation was the creation of a multi-propulsor sizing methodology which accounts for diff erences between propulsors during flight that is induced by their interaction with the vehicle. A modified multi-design point approach was used which employs a set of design and power management rules to relate the operation of the propulsors. A performance comparison of this methodology with the standard single propulsor approach showed a signicant difference. The final area of investigation was the determination of critical o ff-design conditions for the sizing procedure. A screening process is developed which tests all off -design conditions for a subset of the design space to find conditions which are stall margin or thrust deficient. The experiment showed that it is necessary to consider the high angle of attack take-off condition during sizing for the HWB vehicle and that a variable area nozzle is required to meet the operability constraint. A follow on experiment showed that the inclusion of this point reduced the achievable fuel burn benefit for more aggressive BLI designs.
2

The Analysis and Prediction of Jet Flow and Jet Noise about Airframe Surfaces

Smith, Matthew James 15 October 2013 (has links)
Aircraft noise mitigation has been an ongoing challenge for the aeronautics research community. In response to this challenge, aircraft concepts have been developed in which the propulsion system is integrated with the airframe to shield the noise from the observer. These concepts exhibit situations where the jet exhaust interacts with an airframe surface. Jet flows interacting with nearby surfaces exhibit a complex behavior in which acoustic and aerodynamic characteristics are altered. The physical understanding and accurate modeling of these characteristics are essential to designing future low-noise aircraft. In this thesis, an alternative approach is created for predicting jet mixing noise that utilizes an acoustic analogy and the solution of the steady Reynolds-Averaged Navier-Stokes (RANS) equations using a two equation turbulence model. A tailored Green's function is used in conjunction with the acoustic analogy to account for the propagation effects of mixing noise due to a nearby airframe surface. The tailored Green's function is found numerically using a newly developed ray tracing method. The variation of the aerodynamics, acoustic source, and far- field acoustic intensity are examined as a large flat plate is moved relative to the nozzle exit. Steady RANS solutions are used to study the aerodynamic changes in the field-variables and turbulence statistics. To quantify the propulsion airframe aeroacoustic (PAA) installation effects on the aerodynamic source, a non-dimensional number is formed that can be used as a basic guide to determine if the aerodynamic source is affected by the airframe and if additional noise produced by the airframe surface is present. The aerodynamic and noise prediction models are validated by comparing results with Particle Image Velocimetry (PIV) and far-field acoustic data respectively. The developed jet noise scattering methodology is then used to demonstrate the shielding effects of the Hybrid Wing Body (HWB) aircraft. The validation assessment shows that the acoustic analogy and tailored Green's function provided by the ray tracing method are capable of capturing jet shielding characteristics for multiple configurations and jet exit conditions. / Master of Science
3

Experimental aeroacoustic and aerodynamic analysis of a large-scale flap side-edge model / Análise experimental aeroacústica e aerodinâmica de um modelo de ponta de flap de grande escala

Giraldo, Daniel Acevedo 28 March 2019 (has links)
The first bypass turbofan engines came into operation in the early 1970s. The need for reductions in the fuel consumption affected aircraft noise positively through reductions in the jet noise. Over the past decades, the bypass ratio of turbofan engines has continuously increased and, as a result, aircraft engine noise has decreased to a level comparable to the noise originated from the turbulent flow around the airframe for take-off and landing conditions. Although aircraft have become quieter, the number of individuals affected by the aviation growth is likely to increase. Airframe noise has been currently identified as the ultimate aircraft noise barrier and many efforts devoted to its reductions have focused specifically on landing gears and high-lift devices, which are the most relevant noise contributors. Some devices have been designed to reduce flap noise, however, not all of them have been successfully tested in a detailed large-scale flap model due to their difficult implementation in real flap side-edges. This research investigates the relationship between the parameters of a large-scale flap model at 1.50×106 Reynolds number and the physics responsible for flap side-edge noise generation, one of the most dominant sources of the airframe noise. Experimental tests were conducted in a wind-tunnel and flow-field measurements were taken by a multi-hole pitot probe and an aerodynamic balance and complemented by phased microphone array techniques towards a deeper understanding of flap side-edge noise sources and their correlations to unsteady vorticity fluctuations. Conventional beamforming and CLEAN-SC and DAMAS deconvolution methodologies provided far-field acoustic spectra estimations and noise source mapping. The model used for the tests consists of an unswept isolated flap element with representative tip details present in conventional medium-range transport aircraft. The instrumentation includes 106 steady pressure taps distributed chord-wise and span-wise and a sand trip tape to transition the laminar boundary layer. Different side-edge devices were assessed towards airframe noise reductions. A perforated side-edge treatment was also applied to the flap side-edge. Results of aerodynamic and aeroacoustic tests conducted in the LAE-1 closed circuit wind tunnel with a closed test section at the São Carlos School of Engineering - University of São Paulo (EESC-USP) at up to 40 m/s flow speeds provided specific information on the aeroacoustic and aerodynamic characterization of the dominant acoustic source mechanisms of the flap model. / Os primeiros motores turbofan com razão de desvio entraram em operação no início dos anos 70. A necessidade de reduções no consumo de combustível afetou positivamente o ruído das aeronaves através de reduções no ruído do jato. Nas últimas décadas, a razão de desvio de motores turbofan aumentou continuamente e, como resultado, o ruído do motor da aeronave diminuiu para um nível comparável ao ruído originado do fluxo turbulento ao redor do airframe para as condições de decolagem e pouso. Embora as aeronaves tenham-se tornado mais silenciosas, é provável que o número de indivíduos afetados pelo crescimento da aviação aumente. Atualmente, o ruído de airframe tem sido identificado como a barreira máxima de ruído para aeronaves e muitos esforços dedicados à sua redução se concentraram especificamente no trem de pouso e dispositivos de alta sustentação, que são os contribuidores de ruído mais relevantes. Alguns dispositivos foram projetados para reduzir o ruído do flap, no entanto, nem todos deles foram testados com sucesso em um modelo detalhado de flap de grande escala, devido a sua difícil implementação nas bordas laterais do flap real. Esta pesquisa investiga a relação entre os parâmetros de um modelo de flap de grande escala com número de Reynolds de 1.50 × 106 e a física responsável pela geração de ruído na borda lateral do flap, uma das fontes mais dominantes do ruido de airframe. Testes experimentais foram realizados em um túnel de vento e as medidas do escoamento foram tomadas por uma sonda pitot de múltiplos furos e uma balança aerodinâmica e complementadas por técnicas de antenas de microfones para um entendimento mais profundo das fontes de ruído da ponta do flap e suas correlações com flutuações instáveis de vorticidade. O beamforming convencional e as metodologias de deconvolução CLEAN-SC e DAMAS forneceram estimativas de espectros acústicos de campo distante e mapeamento de fontes de ruído. O modelo usado para os testes consiste em um elemento de flap isolado, sem enflechamento, com detalhes de ponta representativos presentes em aeronaves convencionais de transporte de médio alcance. A instrumentação inclui 106 tomadas de pressão estacionárias distribuídas na corda e na envergadura e um trip de fita de areia para fazer a transição da camada limite laminar. Diferentes dispositivos de borda lateral foram avaliados em relação às reduções de ruído de airframe. Um tratamento perfurado de borda lateral também foi aplicado à borda lateral do flap. Os resultados dos testes aerodinâmicos e aeroacústicos realizados no túnel de vento de circuito fechado LAE-1, com seção de provas fechada na Escola de Engenharia de São Carlos - Universidade de São Paulo (EESC-USP) com velocidade de fluxo de até 40 m/s forneceram informações específicas sobre a caracterização aeroacústica e aerodinâmica dos mecanismos dominantes de fonte acústica do modelo de flap.
4

A framework for flexible integration in robotics and its applications for calibration and error compensation

To, Minh Hoang January 2012 (has links)
Robotics has been considered as a viable automation solution for the aerospace industry to address manufacturing cost. Many of the existing robot systems augmented with guidance from a large volume metrology system have proved to meet the high dimensional accuracy requirements in aero-structure assembly. However, they have been mainly deployed as costly and dedicated systems, which might not be ideal for aerospace manufacturing having low production rate and long cycle time. The work described in this thesis is to provide technical solutions to improve the flexibility and cost-efficiency of such metrology-integrated robot systems. To address the flexibility, a software framework that supports reconfigurable system integration is developed. The framework provides a design methodology to compose distributed software components which can be integrated dynamically at runtime. This provides the potential for the automation devices (robots, metrology, actuators etc.) controlled by these software components to be assembled on demand for various assembly applications. To reduce the cost of deployment, this thesis proposes a two-stage error compensation scheme for industrial robots that requires only intermittent metrology input, thus allowing for one expensive metrology system to be used by a number of robots. Robot calibration is employed in the first stage to reduce the majority of robot inaccuracy then the metrology will correct the residual errors. In this work, a new calibration model for serial robots having a parallelogram linkage is developed that takes into account both geometric errors and joint deflections induced by link masses and weight of the end-effectors. Experiments are conducted to evaluate the two pieces of work presented above. The proposed framework is adopted to create a distributed control system that implements calibration and error compensation for a large industrial robot having a parallelogram linkage. The control system is formed by hot-plugging the control applications of the robot and metrology used together. Experimental results show that the developed error model was able to improve the 3s positional accuracy of the loaded robot from several millimetres to less than one millimetre and reduce half of the time previously required to correct the errors by using only the metrology. The experiments also demonstrate the capability of sharing one metrology system to more than one robot.
5

A framework for flexible integration in robotics and its applications for calibration and error compensation

To, Minh Hoang 06 1900 (has links)
Robotics has been considered as a viable automation solution for the aerospace industry to address manufacturing cost. Many of the existing robot systems augmented with guidance from a large volume metrology system have proved to meet the high dimensional accuracy requirements in aero-structure assembly. However, they have been mainly deployed as costly and dedicated systems, which might not be ideal for aerospace manufacturing having low production rate and long cycle time. The work described in this thesis is to provide technical solutions to improve the flexibility and cost-efficiency of such metrology-integrated robot systems. To address the flexibility, a software framework that supports reconfigurable system integration is developed. The framework provides a design methodology to compose distributed software components which can be integrated dynamically at runtime. This provides the potential for the automation devices (robots, metrology, actuators etc.) controlled by these software components to be assembled on demand for various assembly applications. To reduce the cost of deployment, this thesis proposes a two-stage error compensation scheme for industrial robots that requires only intermittent metrology input, thus allowing for one expensive metrology system to be used by a number of robots. Robot calibration is employed in the first stage to reduce the majority of robot inaccuracy then the metrology will correct the residual errors. In this work, a new calibration model for serial robots having a parallelogram linkage is developed that takes into account both geometric errors and joint deflections induced by link masses and weight of the end-effectors. Experiments are conducted to evaluate the two pieces of work presented above. The proposed framework is adopted to create a distributed control system that implements calibration and error compensation for a large industrial robot having a parallelogram linkage. The control system is formed by hot-plugging the control applications of the robot and metrology used together. Experimental results show that the developed error model was able to improve the 3 positional accuracy of the loaded robot from several millimetres to less than one millimetre and reduce half of the time previously required to correct the errors by using only the metrology. The experiments also demonstrate the capability of sharing one metrology system to more than one robot.
6

Reset Aviation Maintenance Program Study of U.S. Army Aviation

Williams, Kristopher B. 01 May 2011 (has links)
U.S. Army helicopter maintenance condition is affected by operation environment and high flight hours. Due to the environmental conditions and high operation tempo of Afghanistan and Iraq, U.S. Army Aviation created the RESET aviation maintenance program to provide restorative maintenance following deployments in theater. The RESET maintenance program was created in addition to the existing two-level maintenance programs. Following deployment, RESET is a thorough cleaning to remove contaminants, inspection of airframe and components, and repair cycle to restore the condition of the helicopter to acceptable condition. Based on the original intent of RESET, it was projected that at the conclusion of military operations in Afghanistan and Iraq, the RESET maintenance program could be discontinued. Because of the presumed safety, reliability, and mission readiness created by RESET, this thesis appraised the RESET maintenance program as a permanent addition to U.S. Army Aviation maintenance programs. The hypothesis was that RESET does improve safety, reliability, and mission readiness of the Army UH-60 Black Hawk fleet. The design was a quantitative survey of three variables: safety, reliability, and mission readiness. The survey featured Likert scale and open-ended questions of three groups: UH-60 maintenance test pilots, UH-60 AVUM/AVIM maintenance supervisory personnel, and ACE (Airframe Condition Evaluation) technical evaluators. Data from each of the three survey groups verified the hypothesis that RESET improved safety, reliability, and mission readiness. Data from open-ended questions indicated that the additional disassembly and special inspections of RESET are more extensive than the aviation unit and intermediate Phased Maintenance Inspection (PMI). Therefore, given the disassembly and special inspections of RESET, and the verification that RESET improves safety, reliability, and mission readiness, it was concluded that RESET is a successful program that should be continued. Based on the effectiveness of RESET in discovering these deficiencies, RESET should be a permanent addition to the Army aviation maintenance programs.
7

CFD Investigations of a Transonic Swept-Wing Laminar Flow Control Flight Experiment

Neale, Tyler P. 2010 May 1900 (has links)
Laminar flow control has been studied for several decades in an effort to achieve higher efficiencies for aircraft. Successful implementation of laminar flow control technology on transport aircraft could significantly reduce drag and increase operating efficiency and range. However, the crossflow instability present on swept-wing boundary layers has been a chief hurdle in the design of laminar wings. The use of spanwise-periodic discrete roughness elements (DREs) applied near the leading edge of a swept-wing typical of a transport aircraft represents a promising technique able to control crossflow and delay transition to accomplish the goal of increased laminar flow. Recently, the Flight Research Laboratory at Texas A&M University conducted an extensive flight test study using DREs on a swept-wing model at chord Reynolds numbers in the range of eight million. The results of this study indicated DREs were able to double the laminar flow on the model, pushing transition back to 60 percent chord. With the successful demonstration of DRE technology at these lower chord Reynolds numbers, the next logical step is to extend the technology to higher Reynolds numbers in the range of 15 to 20 million typical of smaller transport aircraft. To conduct the flight tests at the higher Reynolds numbers, DREs will be placed on a wing glove attached to the aircraft wing. However, a feasibility study was necessary before initiating the flight-testing. First, a suitable aircraft able to achieve the Reynolds numbers and accommodate a wing glove was identified. Next, a full CFD analysis of the aircraft was performed to determine any adverse effects on the wing flow-field from the aircraft engines. This required an accurate CAD model of the selected aircraft. Proper modeling techniques were needed to represent the effects of the aircraft engine. Once sufficient CFD results were obtained, they were used as guidance for the placement of the glove. The attainable chord Reynolds numbers based on the recommendations for the wing glove placement then determined if the selected aircraft was suitable for the flight-testing.
8

Turbulence Mechanisms in a Supersonic Rectangular Multistream Jet with an Aft-Deck

Stack, Cory M. 17 October 2019 (has links)
No description available.
9

Clean Wing Airframe Noise Modeling for Multidisciplinary Design and Optimization

Hosder, Serhat 13 September 2004 (has links)
A new noise metric has been developed that may be used for optimization problems involving aerodynamic noise from a clean wing. The modeling approach uses a classical trailing edge noise theory as the starting point. The final form of the noise metric includes characteristic velocity and length scales that are obtained from three-dimensional, steady, RANS simulations with a two- equation k-omega turbulence model. The noise metric is not the absolute value of the noise intensity, but an accurate relative noise measure as shown in the validation studies. One of the unique features of the new noise metric is the modeling of the length scale, which is directly related to the turbulent structure of the flow at the trailing edge. The proposed noise metric model has been formulated so that it can capture the effect of different design variables on the clean wing airframe noise such as the aircraft speed, lift coefficient, and wing geometry. It can also capture three-dimensional effects which become important at high lift coefficients, since the characteristic velocity and the length scales are allowed to vary along the span of the wing. Noise metric validation was performed with seven test cases that were selected from a two-dimensional NACA 0012 experimental database. The agreement between the experiment and the predictions obtained with the new noise metric was very good at various speeds, angles of attack, and Reynolds Number, which showed that the noise metric is capable of capturing the variations in the trailing edge noise as a relative noise measure when different flow conditions and parameters are changed. Parametric studies were performed to investigate the effect of different design variables on the noise metric. Two-dimensional parametric studies were done using two symmetric NACA four-digit airfoils (NACA 0012 and NACA 0009) and two supercritical (SC(2)-0710 and SC(2)-0714) airfoils. The three-dimensional studies were performed with two versions of a conventional transport wing at realistic approach conditions. The twist distribution of the baseline wing was changed to obtain a modified wing which was used to investigate the effect of the twist on the trailing edge noise. An example study with NACA 0012 and NACA 0009 airfoils demonstrated a reduction in the trailing edge noise by decreasing the thickness ratio and the lift coefficient, while increasing the chord length to keep the same lift at a constant speed. Both two- and three-dimensional studies demonstrated that the trailing edge noise remains almost constant at low lift coefficients and gets larger at higher lift values. The increase in the noise metric can be dramatic when there is separation on the wing. Three-dimensional effects observed in the wing cases indicate the importance of calculating the noise metric with a characteristic velocity and length scale that vary along the span. The twist change does not have a significant effect on the noise at low lift coefficients, however it may give significant noise reduction at higher lift values. The results obtained in this study show the importance of the lift coefficient on the airframe noise of a clean wing and favors having a larger wing area to reduce the lift coefficient for minimizing the noise. The results also point to the fact that the noise reduction studies should be performed in a multidisciplinary design and optimization framework, since many of the parameters that change the trailing edge noise also affect the other aircraft design requirements. It's hoped that the noise metric developed here can aid in such multidisciplinary design and optimization studies. / Ph. D.
10

Effect of Single Light Orientation on Landing Gear Wake

Arezina, Marko 17 November 2017 (has links)
Within the overarching area of airplane noise, landing gear noise has been proven to be a major contributor to airframe noise. Despite a large focus given to it by past research work, landing gear noise investigations have continuously failed to include landing lights, completely disregarding their potential for seriously altering the landing gear wake structure and overall noise signature. This thesis is one of the first studies to focus on the effect of landing light orientation on landing gear wake and landing gear noise. Pressure fluctuations in the wake of a simplified single light landing gear model are investigated experimentally for several freestream velocities and at various elevations of measurement plane. The effect of the distance between the light and the landing gear strut is also investigated. Three-dimensional flow is found in the wake at the center, or zero elevation, plane. This three-dimensionality is found to be much weaker at the highest elevation from the light, where the wake is found to be primarily two-dimensional. The nature of the transition region between the three-dimensional flow and two-dimensional flow is not investigated, but it is acknowledged that a transition region exists. Complex flow behaviour leading to a wake width larger than twice the size of the light-strut assembly width is found to be present at the zero elevation, and phase-locked PIV imaging is unable to capture any periodic motion within the wake at this elevation. In contrast, the wake at the highest elevation is found to resemble the flow in the wake of circular cylinders, and phase-locked PIV imaging at this elevation clearly captures an alternate vortex shedding scheme. Due to this difference in wake structures, the periodicity at the highest elevation is found to be stronger than that observed at the zero elevation. Changes in light-strut spacing are found to inversely affect the strength of the periodicity in the wake, as larger spacing is linked to greater influence of three-dimensionality, and therefore a weaker periodicity. Changes in light-strut spacing are also found to be inversely related to the oscillation frequency of the periodicity, with the cause for this relationship possibly explained by the wider wake at increased spacing. It is found that the oscillation frequency of periodicity in the single light landing gear wake is consistently in the Strouhal number range of St=0.16-0.18 for all light-strut spacing distances, freestream velocities, and elevations. The flow around the light-strut assembly is therefore characterized as modulated flow around a cylindrical strut because alternate vortex shedding is dominant except for a slight region where the light acts to generate three-dimensionality, and because the oscillation frequency is near that of vortex shedding from a circular cylinder, St=0.19. The wakes of the single light landing gear and two-light landing gear models are compared, but neither design can be supported as quieter than the other at this time due to the unknown amount of vertical radiation from the landing gear wakes. / Thesis / Master of Applied Science (MASc)

Page generated in 0.0553 seconds