• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pairing Generation for Airline Crew Scheduling

Bayer, Daniel Andreas January 2012 (has links)
Airline planning is a complex and difficult process. The biggest airlines in the world plan for and operate fleets of over 700 aircraft using tens of thousands of crew members. As such, small percentages in savings translate to millions of dollars. In this thesis, we study the pairing and duty generation problem in the context of airline crew scheduling, and propose approaches to improve the computational speed and the solution quality. We propose several enumeration algorithms to generate all possible duty periods of a given schedule to improve on the time required to generate duty periods; and present a set of column generation models to improve on the solution quality. When tested on a real test case study, the proposed approaches are found to improve the computational times from 142 seconds down to less than one second, and the cost savings of 13.7%.
2

Pairing Generation for Airline Crew Scheduling

Bayer, Daniel Andreas January 2012 (has links)
Airline planning is a complex and difficult process. The biggest airlines in the world plan for and operate fleets of over 700 aircraft using tens of thousands of crew members. As such, small percentages in savings translate to millions of dollars. In this thesis, we study the pairing and duty generation problem in the context of airline crew scheduling, and propose approaches to improve the computational speed and the solution quality. We propose several enumeration algorithms to generate all possible duty periods of a given schedule to improve on the time required to generate duty periods; and present a set of column generation models to improve on the solution quality. When tested on a real test case study, the proposed approaches are found to improve the computational times from 142 seconds down to less than one second, and the cost savings of 13.7%.

Page generated in 0.1551 seconds