• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Combat aircraft mission tradeoff models for conceptual design evaluation

Malakhoff, Lev A. January 1988 (has links)
A methodology is developed to address the analyses of combat aircraft attrition. The operations of an aircraft carrier task force are modeled using the systems dynamics simulation language DYNAMO. The three mission-roles include: surface attack, lighter escort, and carrier defense. The level of analysis is performed over the entire campaign, going beyond the traditional single·sortie analysis level. These analyses are performed by determining several measures of effectiveness (MOEs) for whatever constraints are applied to the model. The derived MOEs include: Campaign Survivability (CS), Fractlon of Force Lost (FFL), Exchange Ratio (ER), Relative Exchange Ratio (RER), Possible Crew Loss (PCL), and Replacement Cost (RC). RER is felt to be the most useful MOE since it considers the initial inventory levels of both friendly and enemy forces, and its magnitude is easy for the analyst to relate to (an RER greater than one is a prediction of a friendly force’s victory). The simulation model developed in this research is run for several experiments. The effects of force size on the MOEs ls studied, as well as a hypothetical multimission aircraft deployed to perform any of the three missions (albeit at lower effectiveness than the speciallzed aircraft for their given roles but nonetheless with a higher availability). Evaluation of specific technological improvements such as smaller radar cross section, higher thrust/weight, improved weapons ranges, is made using the MOEs. Also, a cost-effectiveness tradeoff methodology is developed by determining the acquisition cost ratio (ACR) for certain modified alternatives the baseline by determining the required initial inventory of modified aircraft to produce the same total effectiveness of the baseline aircraft. / Ph. D.
2

A system dynamics approach to aircraft survivability-attrition analysis

Santoso, Iwan B. January 1984 (has links)
Mathematical representation of military operations have long fascinated analysts and practitioners. In 1916 English mathematician Frederick W. Lanchester represented the attrition rates of two opposing forces in the form of two differential equations, functions of the size and combat effectiveness of each side. Lanchester's model was an intellectual breakthrough in the analysis of warfare insofar as it provided a deep insight into the possibilities inherent in simple models of combat. Interestingly enough, Lanchester's representation of the problem as a dynamic system is precisely the approach used in the system dynamics methodology employed here. In system dynamics, differential equations are converted to difference equations and there is virtually no limit to the number that can be employed to represent the known and complex details of a system. The attrition model developed here describes the interaction between twelve types of U.S. combat aircraft and twelve types of U.S.S.R. combat aircraft and indicates the winner or the loser at the end of an engagement or a battle during wartime. To guide the peacetime preparations, a generic baseline and modified aircraft are utilized and compared using an adaptation of the attrition model, so as to decide if the proposed modification of U.S. aircraft should be undertaken or not. Two measures of effectiveness are presented to evaluate the overall performance of the modified aircraft compared to the baseline aircraft -- decreased program life cycle cost and increased payload delivered to target per aircraft lost. Scenario analyses are performed to assess the combat aircraft effectiveness under changes to endogenous and exogenous parameters. / Ph. D.

Page generated in 0.1297 seconds