• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aerodynamic characterization of certain wing sections utilizing computational fluid dynamics techniques

Van Tonder, Martinus Stefanus 22 August 2012 (has links)
M.Ing. / The aim of this dissertation is to apply numerical aerodynamic principles to the characterization of an alternative stepped aerofoil concept. The accurate and efficient determination of the aerodynamic forces caused by the relative fluid motion and the consequent lift and drag coefficients are essential for the characterization of new aerofoils. The numerical method used is in the form of a Computational Fluid Dynamics code, which integrates the Navier-Stokes equations through finite-volume dictretization principals. A two-dimensional approximate analysis procedure is used together with a two-equation turbulence approximation in the form of the "standard" k-c turbulence model. Available software is used and adapted where applicable. A suitable method for comparing wing section characteristics as a function of profile geometry and attitude is developed in this thesis. This is achieved by first refining a numerical test case and quantifying the influences of model parameters such as grid design, boundary conditions and solution variables. Alternative geometrical aerofoil concepts can then be characterized by employing the same principles. This thesis contains selected results of hundreds such numerical simulations, all of which were necessary to refine the test case and eventually characterize the aerofoils. The proposed wing section geometry, incorporating a rearward-facing step shows some improvement in aerodynamic performance over a standard reference case. Geometrical variations of the step concept are also investigated and can later be used in an optimization procedure. A transient simulation approach is employed for unsteady cases and flow visualization is done in order to learn more about the unique aerodynamic action of the proposed concept. Experimental results obtained in a wind tunnel for the pressure around the investigated aerofoils are used to verify numerical results. Further development in the numerical approach may include the use of additional, more advanced turbulence models. This may allow the research of more complex phenomena such as stall and also broader ranges of Reynolds numbers in more detail. To complete the characterization process, the moment coefficients should also be included.
2

Integrated aerodynamic-structural wing design optimization

Unger, Eric Robert 04 September 2008 (has links)
Several procedures for the simultaneous aerodynamic-structural design optimization of aircraft wings are investigated. These procedures include efficient methods for optimization and sensitivity calculations that are applied to two specific design examples. The first is a subsonic transport aircraft with a composite forwardswept wing. The aerodynamic modeling for this case is provided by vortex-lattice theory and the structural model initially utilizes finite-element analyses. Even with efficient sensitivity methods, the approximate optimization problem still requires a large computational effort. To reduce this cost, a variable-complexity model for the structural analyses is introduced. First, an algebraic equation model for wing weight is used in the optimization procedure to obtain an aerodynamic design that approximately accounts for the effects of wing geometry on wing weight. Then this design is refined by simultaneous aerodynamic-structural optimization based on the finite-element analysis. The net effect of this dual structural model is a substantial reduction in optimization costs. The second example is the wing design of a supersonic High-Speed Civil Transport (HSCT). For this case, the simple wing-weight equations for structures are retained. For the aerodynamics, a variable-complexity model was introduced with the complex models provided by volumetric wave drag analysis and panel methods. In addition, simple algebraic models for wave and drag due to lift provide inexpensive approximations during most of the optimization cycles. With the minimization of the costly complex sensitivity calculations, a reduction in optimization costs is realized. / Ph. D.
3

Structural optimization and its interaction with aerodynamic optimization for a high speed civil transport wing

Huang, Ximing 24 October 2005 (has links)
A variable-complexity design strategy with combined aerodynamic and structural optimization procedures is presented for the high speed civil transport design (HSCT). Variable-complexity analysis methods are used to reduce the computational expense. A finite element-model based structural optimization procedure with flexible loads is implemented to evaluate the wing bending material weight. Static aeroelastic effects, evaluated through the comparison of rigid and flexible wing models, are found to be small in the HSCT design. The results of structural optimization are compared with two quasi-empirical weight equations. Good correlation is obtained between the structural optimization and one of the weight equations. Based on this comparison, an interlacing procedure is developed to combine both the simple weight equations and structural optimization in the HSCT design optimization, at modest computational cost. HSCT designs based on the interlacing procedure reveal that the aerodynamic optimizer may take advantage of weaknesses in weight equation. However, the optimizer may be unable to escape the local minimum due to the noisy of aerodynamic response and the lack of derivative information for the interlacing procedure. / Ph. D.

Page generated in 0.1007 seconds