• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental studies in a supersonic through-flow fan blade cascade

Chesnakas, Christopher J. 12 October 2005 (has links)
An investigation has been performed of the flow in a supersonic through-flow fan blade cascade. The blade shapes are those of the baseline supersonic through-flow fan (STFF) under investigation at the NASA Lewis Research Center. Measurements were made at an inlet Mach number of 2.36 over a 15° range of incidence. Flowfield wave patterns were recorded using spark shadowgraph photography and steady-state instrumentation was used to measure blade surface pressure distributions and downstream total and static pressure distributions. A two-dimensional LDV system was used to map the downstream flowfield. From these measurements, the integrated loss coefficients are presented as a function of incidence angle along with analysis indicating the source of losses in the STFF cascade. The results are compared with calculations made using a two-dimensional, cell-centered, finite-volume, Navier-Stokes code with upwind options. Good general agreement is found at design conditions, with lesser agreement at off-design conditions. Analysis of the leading edge shock shows that the leading edge radius is a major source of losses in STFF blades. Losses from the leading edge bluntness are convected downstream into the blade wake, and are difficult to distinguish from viscous losses. Shock losses are estimated to account for 70% to 80% of the losses in the STFF cascade. / Ph. D.

Page generated in 0.0561 seconds