• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of combustion instability in ramjet combustors

Reuter, Dierk Martin 08 1900 (has links)
No description available.
2

Acoustic-vortical-combustion interaction in a solid fuel ramjet simulator

Davis, James Arthur 05 1900 (has links)
No description available.
3

Laser Doppler diagnostics of the flow behind a backward facing step

De Groot, Wim A. (Wim Adrianus) 08 1900 (has links)
No description available.
4

The characterization of the flowfield of a dump combustor

Gabruk, Robert S. 09 May 2009 (has links)
To provide quality benchmark data (that can be used in numerical simulation comparisons) and to examine the effects of combustion on a typical ramjet engine flowfield, a water-cooled, stainless steel dump combustor model was developed. A two-component Laser Doppler Anemometer (LOA) was used to measure the mean and turbulent velocities in the axial and tangential directions and provide a comparison between combusting and isothermal flows. However, before any LOA measurements could be taken, the combustor had to be configured to run in a suitably stable mode. Stability was identified by the pressure spectra obtained under various running conditions using piezoelectric pressure transducers wired to a spectrum analyzer. Operational parameters such as fuel composition, fuel injection location, acoustic configuration, and equivalence ratio were varied until instabilities were minimized. The optimal configuration ran with upstream fuel injection (premixed mode) at the duct center line and an orifice plate installed immediately upstream of the fuel injectors, with propane as the fuel. Once stability was achieved, LOA data was taken. The results showed some significant differences between the reacting and nonreacting flows. The most significant effect was the difference between the inherent recirculation regions for each case. Combustion decreased the length of the region by approximately 50 percent, while increasing the maximum negative velocities. This made for a more compact, but stronger, recirculation region. Since the recirculation region acts as the main flame holder and is a major source of turbulence, the changes in this region significantly altered the dump combustor flowfield. / Master of Science
5

Theoretical and numerical analysis of supersonic inlet starting by mass spillage

Najafiyazdi, Alireza. January 2007 (has links)
Supersonic inlet starting by mass spillage is studied theoretically and numerically in the present thesis. A quasi-one-dimensional, quasi-steady theory is developed for the analysis of flow inside a perforated inlet. The theory results in closed-form relations applicable to flow starting by the mass spillage technique in supersonic and hypersonic inlets. / The theory involves three parameters to incorporate the multi-dimensional nature of mass spillage through a wall perforation. Mass spillage through an individual slot is studied to determine these parameters; analytical expressions for these parameters are derived for both subsonic and supersonic flow conditions. In the case of mass spillage from supersonic flows, the relations are exact. However, due to the complexity of flow field, the theory is an approximation for subsonic flows. Therefore, a correction factor is introduced which is determined from an empirical relation obtained from numerical simulations. / A methodology is also proposed to determine perforation size and distribution to achieve flow starting for a given inlet at a desired free-stream Mach number. The problem of shock stability inside a perforated inlet designed with the proposed method is also discussed. / The method is demonstrated for some test cases. Time-realistic CFD simulations and experimental results in the literature confirm the accuracy of the theory and the reliability of the proposed design methodology.
6

Theoretical and numerical analysis of supersonic inlet starting by mass spillage

Najafiyazdi, Alireza. January 2007 (has links)
No description available.

Page generated in 0.0647 seconds