• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the spectral and pseudospectral properties of non self adjoint Schrödinger operators

Redparth, Paul Robert January 2001 (has links)
No description available.
2

Finite Rank Perturbations of Random Matrices and their Continuum Limits

Bloemendal, Alexander 05 January 2012 (has links)
We study Gaussian sample covariance matrices with population covariance a bounded-rank perturbation of the identity, as well as Wigner matrices with bounded-rank additive perturbations. The top eigenvalues are known to exhibit a phase transition in the large size limit: with weak perturbations they follow Tracy-Widom statistics as in the unperturbed case, while above a threshold there are outliers with independent Gaussian fluctuations. Baik, Ben Arous and Péché (2005) described the transition in the complex case and conjectured a similar picture in the real case, the latter of most relevance to high-dimensional data analysis. Resolving the conjecture, we prove that in all cases the top eigenvalues have a limit near the phase transition. Our starting point is the work of Rámirez, Rider and Virág (2006) on the general beta random matrix soft edge. For rank one perturbations, a modified tridiagonal form converges to the known random Schrödinger operator on the half-line but with a boundary condition that depends on the perturbation. For general finite-rank perturbations we develop a new band form; it converges to a limiting operator with matrix-valued potential. The low-lying eigenvalues describe the limit, jointly as the perturbation varies in a fixed subspace. Their laws are also characterized in terms of a diffusion related to Dyson's Brownian motion and in terms of a linear parabolic PDE. We offer a related heuristic for the supercritical behaviour and rigorously treat the supercritical asymptotics of the ground state of the limiting operator. In a further development, we use the PDE to make the first explicit connection between a general beta characterization and the celebrated Painlevé representations of Tracy and Widom (1993, 1996). In particular, for beta = 2,4 we give novel proofs of the latter. Finally, we report briefly on evidence suggesting that the PDE provides a stable, even efficient method for numerical evaluation of the Tracy-Widom distributions, their general beta analogues and the deformations discussed and introduced here. This thesis is based in part on work to be published jointly with Bálint Virág.
3

Finite Rank Perturbations of Random Matrices and their Continuum Limits

Bloemendal, Alexander 05 January 2012 (has links)
We study Gaussian sample covariance matrices with population covariance a bounded-rank perturbation of the identity, as well as Wigner matrices with bounded-rank additive perturbations. The top eigenvalues are known to exhibit a phase transition in the large size limit: with weak perturbations they follow Tracy-Widom statistics as in the unperturbed case, while above a threshold there are outliers with independent Gaussian fluctuations. Baik, Ben Arous and Péché (2005) described the transition in the complex case and conjectured a similar picture in the real case, the latter of most relevance to high-dimensional data analysis. Resolving the conjecture, we prove that in all cases the top eigenvalues have a limit near the phase transition. Our starting point is the work of Rámirez, Rider and Virág (2006) on the general beta random matrix soft edge. For rank one perturbations, a modified tridiagonal form converges to the known random Schrödinger operator on the half-line but with a boundary condition that depends on the perturbation. For general finite-rank perturbations we develop a new band form; it converges to a limiting operator with matrix-valued potential. The low-lying eigenvalues describe the limit, jointly as the perturbation varies in a fixed subspace. Their laws are also characterized in terms of a diffusion related to Dyson's Brownian motion and in terms of a linear parabolic PDE. We offer a related heuristic for the supercritical behaviour and rigorously treat the supercritical asymptotics of the ground state of the limiting operator. In a further development, we use the PDE to make the first explicit connection between a general beta characterization and the celebrated Painlevé representations of Tracy and Widom (1993, 1996). In particular, for beta = 2,4 we give novel proofs of the latter. Finally, we report briefly on evidence suggesting that the PDE provides a stable, even efficient method for numerical evaluation of the Tracy-Widom distributions, their general beta analogues and the deformations discussed and introduced here. This thesis is based in part on work to be published jointly with Bálint Virág.

Page generated in 0.0549 seconds