• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mulit-Resolution Aitchison Geometry Image Denoising for Low-Light Photography

Miller, Sarah Victoria 01 September 2020 (has links)
No description available.
2

Estimação de distribuições discretas via cópulas de Bernstein / Discrete Distributions Estimation via Bernstein Copulas

Fossaluza, Victor 15 March 2012 (has links)
As relações de dependência entre variáveis aleatórias é um dos assuntos mais discutidos em probabilidade e estatística e a forma mais abrangente de estudar essas relações é por meio da distribuição conjunta. Nos últimos anos vem crescendo a utilização de cópulas para representar a estrutura de dependência entre variáveis aleatórias em uma distribuição multivariada. Contudo, ainda existe pouca literatura sobre cópulas quando as distribuições marginais são discretas. No presente trabalho será apresentada uma proposta não-paramétrica de estimação da distribuição conjunta bivariada de variáveis aleatórias discretas utilizando cópulas e polinômios de Bernstein. / The relations of dependence between random variables is one of the most discussed topics in probability and statistics and the best way to study these relationships is through the joint distribution. In the last years has increased the use of copulas to represent the dependence structure among random variables in a multivariate distribution. However, there is still little literature on copulas when the marginal distributions are discrete. In this work we present a non-parametric approach for the estimation of the bivariate joint distribution of discrete random variables using copulas and Bernstein polynomials.
3

Estimação de distribuições discretas via cópulas de Bernstein / Discrete Distributions Estimation via Bernstein Copulas

Victor Fossaluza 15 March 2012 (has links)
As relações de dependência entre variáveis aleatórias é um dos assuntos mais discutidos em probabilidade e estatística e a forma mais abrangente de estudar essas relações é por meio da distribuição conjunta. Nos últimos anos vem crescendo a utilização de cópulas para representar a estrutura de dependência entre variáveis aleatórias em uma distribuição multivariada. Contudo, ainda existe pouca literatura sobre cópulas quando as distribuições marginais são discretas. No presente trabalho será apresentada uma proposta não-paramétrica de estimação da distribuição conjunta bivariada de variáveis aleatórias discretas utilizando cópulas e polinômios de Bernstein. / The relations of dependence between random variables is one of the most discussed topics in probability and statistics and the best way to study these relationships is through the joint distribution. In the last years has increased the use of copulas to represent the dependence structure among random variables in a multivariate distribution. However, there is still little literature on copulas when the marginal distributions are discrete. In this work we present a non-parametric approach for the estimation of the bivariate joint distribution of discrete random variables using copulas and Bernstein polynomials.
4

Geometry-Aware Learning Algorithms for Histogram Data Using Adaptive Metric Embeddings and Kernel Functions / 距離の適応埋込みとカーネル関数を用いたヒストグラムデータからの幾何認識学習アルゴリズム

Le, Thanh Tam 25 January 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第19417号 / 情博第596号 / 新制||情||104(附属図書館) / 32442 / 京都大学大学院情報学研究科知能情報学専攻 / (主査)教授 山本 章博, 教授 黒橋 禎夫, 教授 鹿島 久嗣, 准教授 Cuturi Marco / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
5

Statistical Approaches to Color Image Denoising and Enhancement

Miller, Sarah Victoria 15 May 2023 (has links)
No description available.
6

Contributions to measure-valued diffusion processes arising in statistical mechanics and population genetics

Lehmann, Tobias 19 September 2022 (has links)
The present work is about measure-valued diffusion processes, which are aligned with two distinct geometries on the set of probability measures. In the first part we focus on a stochastic partial differential equation, the Dean-Kawasaki equation, which can be considered as a natural candidate for a Langevin equation on probability measures, when equipped with the Wasserstein distance. Apart from that, the dynamic in question appears frequently as a model for fluctuating density fields in non-equilibrium statistical mechanics. Yet, we prove that the Dean-Kawasaki equation admits a solution only in integer parameter regimes, in which case the solution is given by a particle system of finite size with mean field interaction. For the second part we restrict ourselves to positive probability measures on a finite set, which we identify with the open standard unit simplex. We show that Brownian motion on the simplex equipped with the Aitchison geometry, can be interpreted as a replicator dynamic in a white noise fitness landscape. We infer three approximation results for this Aitchison diffusion. Finally, invoking Fokker-Planck equations and Wasserstein contraction estimates, we study the long time behavior of the stochastic replicator equation, as an example of a non-gradient drift diffusion on the Aitchison simplex.

Page generated in 0.0343 seconds