• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SUBSURFACE CHARACTERIZATION OF THE HYDRATE BEARING SEDIMENTS NEAR ALAMINOS CANYON 818

Latham, Thomas, Shelander, Dianna, Boswell, Ray, Collett, Timothy S., Lee, Myung 07 1900 (has links)
Gas hydrate has been identified by drilling in Alaminos Canyon block 818, within the Perdido Fold Belt, outboard of the Sigsbee Escarpment, in approximately 2750 meters (9000 feet) of water. At the location of the AC818 #1 (“Tigershark”) well, the gas hydrate occurs within the top 20 m (65 feet) of an approximately 90 meter (300 feet) thick Oligocene Frio sand, a volcaniclastic sandstone rich in lithic fragments, feldspar, and volcanic ash. The Frio reservoir is folded into a 4-way closed anticline. At the crest of the anticline, the sand is partly eroded and is unconformably overlain by 450 m (1500 feet) of Pleistocene shale and sand. The unconformity surface is also in a 4-way closed geometry and defines the top of the hydrate reservoir at the well. The rock is poorly consolidated and has porosity as high as 42% from log data. LWD logs indicate that the hydrate zone has high resistivity and high P-velocity (2750 mps: 9000 fps). The underlying wet sand at the base of the gas hydrate stability zone (GHSZ) has low resistivity and P-velocity (Vp: 1500 mps: 5000 fps). The very low Vp indicates the presence of low-saturation free gas ("fizz gas"). The large velocity contrast creates a strong response in seismic data which was inverted into a 3D gas hydrates saturation (Sgh) volume. Elsewhere in the GHSZ, seismic character was used to predict predominant sediment facies. Relative high stand facies, which are more clay-rich, will generally be characterized by more continuous and parallel seismic reflectors. In contrast, relative low stand facies, which have more sand content, will be characterized by more hummocky, discontinuous seismic character and will often lie on erosional surfaces, particularly in uncompacted sediments. Understanding the stratigraphy throughout the section is important, since sand will often provide beneficial reservoir conditions, while clay will provide more impervious sealing qualities. The seismic interpretation also identifies migration pathways, such as faults and gas chimneys, and the presence of available gas, which are necessary to charge reservoirs within the HSZ.

Page generated in 0.0383 seconds