• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of OSTBC in Cooperative Cognitive Radio Networks using 2-hop DF Relaying Protocol

Tahseen, Muhammad Mustafa, Khan, MatiUllah, Ullah, Farhan January 2011 (has links)
To achieve cooperative diversity in cognitive radio network, Decode and Forward (DF) protocol is implemented at Cognitive Radios (CRs) using Orthogonal Space Time Block Coding (OSTBC). The 2-hop communication between source and destination is completed with the help of Cognitive Relays (CRs) using Multiple Input Multiple Output (MIMO) technology within the network. To achieve spatial diversity and good code rate Alamouti 2×2 STBC is used for transmission. CR is using the decoding (Decode and Forward (DF)) strategy and without amplifying ability before forwarding data towards destination provide better performance. The main objective of this thesis is to detect Primary User (PU) spectrum availability or non-availability for the use of Secondary Users (SU). The Alamouti STBC encoded data is broadcasted to wireless Rayleigh faded channel through transmitter having two transmitting antennas. The CRs are preferred to place close with PU to detect transmitted signal and because of having decoding capability CRs decode the collected data using Maximum Likelihood (ML) decoding technique then re-encode the decoded data for further transmission towards receiver. The energy of PU signal received at relays is calculated using energy detector used at cognitive controller having authority to make final decision about presence or absence of PU signal within the spectrum by comparing calculated energy of PU received signal with a predefined value. If the calculated signal energy is less than threshold value it is pretended as the absence of PU and in the other case spectrum is assumed as occupied by PU. Decoding PU signal at relays before forwarding towards destination provide better performance in terms of detection probability and decreasing probability of false alarming as the Signal to Noise (SNR) increases. The proposed cooperative spectrum sensing using DF protocol at cognitive relays with Alamouti STBC is implemented and results are validated by MATLAB simulation. / +46 455 38 50 00
2

Applying OSTBC in Cooperative Cognitive Radio Networks

Shahzad, Hamid, Botchu, Jaishankar January 2010 (has links)
In this report, we introduce cooperative spectrum sensing using orthogonal space time block coding (OSTBC) in order to achieve cooperative diversity in the cognitive radios (CRs) network. Transmit diversity or gain is achieved by introducing more than one antenna on the transmitter and receiver side, but in small electronic mobile devices it looks impractical. The signals received from the primary users (PUs) are amplified by the cognitive relays and further forwarded to the cognitive controller where decisions are made on the basis of the information collected from each cognitive relay. The cooperative relaying protocol used here in cognitive relays is based on an amplifying-forward (AF) scheme. Alamouti scheme in OSTBC has been proposed to achieve better detection performance in CR network. The energy detector performance is analyzed over an independent Rayleigh fading channel. In CR network the secondary user (SU) shares PU's frequency band if it fi nds PU is not in its vicinity. The SU starts using the licensed band and leaves the band as soon as it finds the PU is present or going to use the same band. The detection of the spectrum holes by CRs has to be more agile and intelligent. The main objective of the CRs network is to use the free holes without causing any interference to the PUs. The energy detection technique is simple and outperforms other sensing techniques in cooperative cognitive radio networks. The energy detector collects information from different users, compares it with a certain prede fined threshold () value and then makes a fi nal decision. Detection and false alarm probabilities are derived and manipulated using OSTBC on PU and SU through AF protocol in cooperative communication. The performance of the system is analyzed with single and multiple relays and with and without direct path between the PUs and SUs. Maximum ratio (MRC) and selection combining (SC) schemes are used in energy detector and the results are compared with and without direct link between PU and SU. The analysis is performed by placing the relay close to the PUs. Our results are processed and validated by computer simulation.
3

Software-Defined Radio Implementation of Two Physical Layer Security Techniques

Ryland, Kevin Sherwood 09 February 2018 (has links)
This thesis discusses the design of two Physical Layer Security (PLS) techniques on Software Defined Radios (SDRs). PLS is a classification of security methods that take advantage of physical properties in the waveform or channel to secure communication. These schemes can be used to directly obfuscate the signal from eavesdroppers, or even generate secret keys for traditional encryption methods. Over the past decade, advancements in Multiple-Input Multiple-Output systems have expanded the potential capabilities of PLS while the development of technologies such as the Internet of Things has provided new applications. As a result, this field has become heavily researched, but is still lacking implementations. The design work in this thesis attempts to alleviate this problem by establishing SDR designs geared towards Over-the-Air experimentation. The first design involves a 2x1 Multiple-Input Single-Output system where the transmitter uses Channel State Information from the intended receiver to inject Artificial Noise (AN) into the receiver's nullspace. The AN is consequently not seen by the intended receiver, however, it will interfere with eavesdroppers experiencing independent channel fading. The second design involves a single-carrier Alamouti coding system with pseudo-random phase shifts applied to each transmit antenna, referred to as Phase-Enciphered Alamouti Coding (PEAC). The intended receiver has knowledge of the pseudo-random sequence and can undo these phase shifts when performing the Alamouti equalization, while an eavesdropper without knowledge of the sequence will be unable to decode the signal. / Master of Science

Page generated in 0.0372 seconds