• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Busemann G-Spaces, CAT(<em>k</em>) Curvature, and the Disjoint (0, <em>n</em>)-Cells Property

Safsten, Clarke Alexander 01 July 2017 (has links)
A review of geodesics and Busemann G-spaces is given. Aleksandrov curvature and the disjoint (0, n)-cells property are defined. We show how these properties are applied to and strengthened in Busemann G-spaces. We examine the relationship between manifolds and Busemann G-spaces and prove that all Riemannian manifolds are Busemann G-spaces, though not all metric manifolds are Busemann G-spaces. We show how Busemann G-spaces that also have bounded Aleksandrov curvature admit local closest-point projections to geodesic segments. Finally, we expound local properties of Busemann G-spaces and define a new property which we call the symmetric property. We show that Busemann G-spaces which have the disjoint (0,n)-cells property for every value of n cannot have the symmetric property.

Page generated in 0.047 seconds