• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Increasing Algal Productivity and Treatment Potential in Raceways Fed Clarified Municipal Wastewater

Pittner, Christopher D. 01 December 2018 (has links) (PDF)
Two sets of triplicate pilot algal raceway ponds (1000-L, 0.30-m deep, paddle wheel mixed) were operated for 14 months at a California wastewater treatment plant to treat wastewater and generate algal-bacterial biomass as biofuel feedstock. Two experiments were run to determine the effect on biomass productivity of (1) hydraulic residence time (HRT: 2, 3, 4, or 4.5 days) and (2) feeding schedule (18 small pulses during 8 AM-4 PM [diurnal] versus 20 large pulses during 4 AM-12 AM [diel]). The target productivity was at least 20 g volatile suspended solids per m2 of pond per day. Additional output variables were followed during the experiments: treatment performance and the effectiveness of biomass harvesting though bioflocculation. Productivity was consistently higher in ponds with a 2-d HRT versus longer HRTs. Average productivity for the 2-d HRT ponds and the variable-HRT ponds (3.6-d average HRT) were 30.1 and 23.4 g/m2-d, respectively. Productivity data collected during the feed regime experiment were highly variable, and average productivities were the same at 26 g/m2-d. During both experiments, both pond sets exceeded the target of 20 g/m2-d on an annual basis. During the hydraulic residence time experiment, the average pond productivity throughout the HRT experiment for the 2-d HRT and 3-d HRT ponds were 30.1 and 23.4 g/m2-d, respectively. Settling efficiency was high for both 2- and 3-d HRT ponds with average turbidity removal of 87-89%. However, total ammonia nitrogen (TAN) concentrations in the 2-day HRT pond effluent were 50-94% higher than in the 3-d HRT pond effluents, although effluent TAN concentrations in both ponds were approximately the same during mid-summer. Furthermore, effluent biochemical oxygen demand (BOD5) concentrations were similar, with the supernatant of Imhoff cones settled for 24 hours containing 24-27 mg/L BOD5 (81-92% removal). In general, the 3-d HRT ponds provided better treatment than the 2-d HRT ponds. During the feeding regime experiment, no productivity or BOD5 removal differences were evident. However, the 3-d HRT ponds had consistently 8 mg/L more effluent TAN than the 2-d HRT ponds.

Page generated in 0.0528 seconds