• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Toxic algae and other marine biota: detection, mitigation, prevention and effects on the food industry

McCollough, Bianca January 1900 (has links)
Master of Science / Food Science Institute / Curtis Kastner / Harmful Algal Blooms (HABs) including Cyanobacteria and other toxic marine biota are responsible for similar harmful effects on human health, food safety, ecosystem maintenance, economic losses and liability issues for aquaculture farms as well as the food industry. Detection, monitoring and mitigation are all key factors in decreasing the deleterious effects of these toxic algal blooms. Harmful algal blooms can manifest toxic effects on a number of facets of animal physiology, elicit noxious taste and odor events and cause mass fish as well as animal kills. Such blooms can adversely impact the perception of the efficacy and safety of the food industry, water utilities, the quality of aquaculture and land farming products, as well as cause ripple effects experienced by coastal communities. HABs can adversely impact coastal areas and other areas reliant on local aquatic ecosystems through the loss of revenues experienced by local restaurants, food manufacturers as well as seafood harvesting/processing plants; loss of tourism revenue, decreased property values and a fundamental shift in the lives of those that are reliant upon those industries for their quality of life. This paper discusses Cyanobacteria, macroalgae, HABs, Cyanobacteria toxins, mitigation of HAB populations and their products as well as the ramifications this burgeoning threat to aquatic/ landlocked communities including challenges these toxic algae pose to the field of food science and the economy.
2

Interaction of High Molecular Weight Compounds with a, β-Unsaturated Carbonyl Moiety with Mammalian and Drosophila Melanogaster Thioredoxin Reductase

Tuladhar, Anupama 18 July 2018 (has links)
The thioredoxin system is the major cellular reductant system present in the cell, whose role is to maintain cellular redox homeostasis. It does this in part, by regulating the activity of many other enzymes including ribonucleotide reductase, which is essential for DNA synthesis. It also acts as an antioxidant, reducing destructive reactive oxygen species. The thioredoxin system is comprised of thioredoxin (Trx) which reduces target protein disulfide bridges by thiol-disulfide exchange and thioredoxin reductase (TrxR) which reduces Trx back to its active state. Thioredoxin reductase is a common target for many cancer drugs including cisplatin and auranofin. Recently we have shown that the Florida red tide toxin, brevetoxin-2 (PbTx-2) can inhibit mammalian TrxR1. Brevetoxin-2 has α, β-unsaturated aldehyde moiety that was proposed to inhibit the enzyme by forming a Michael adduct. Several compounds which are similar to brevetoxin in size and functionality have a similar effect on TrxR. These compounds include antitumor and antibiotics such as manumycin A, geldanamycin, rifamycin SV and thiostrepton and toxins such as brevetoxin-3, nodularin and microcystin-LR. Manumycin A behaves as a typical TrxR1 inhibitor while other compounds screened activate the reduction of small disulfides such as DTNB (5,5’-dithiobis-(2-nitrobenzoic acid)). Mammalian thioredoxin reductase is a homodimer with two redox center viz. N-terminal dithiol buried in the enzyme and C-terminal selenosulfide located on the flexible C-terminal tail. Modification of the C-terminal tail of TrxR by these test compounds can expose N-terminal redox thiol that could reduce DTNB. The C-terminal Sec, a nucleophile can form a Michael adduct with α, β-unsaturated carbonyl moiety of test compounds. Together with point-specific mutant enzymes (C-terminal tail truncated, dead tail and Cys mutant) and enzyme assays that are specific/dependent on C-terminal Sec were used to decipher the site-specific interaction between these test compounds and TrxR. Inhibition of TrxR at the C-terminal redox center produces a pro-oxidant known as SecTRAP (Selenium Compromised Thioredoxin Reductase-derived Apoptotic Proteins), which uses NADPH to produce superoxide radical anion as observed with manumycin A. Since many cancer drugs target TrxR the present study has the potential to discover new cancer drugs.

Page generated in 0.0449 seconds