• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of Stream Ciphers and Cryptographic Properties of Nonlinear Functions

Nawaz, Yassir January 2007 (has links)
Block and stream ciphers are widely used to protect the privacy of digital information. A variety of attacks against block and stream ciphers exist; the most recent being the algebraic attacks. These attacks reduce the cipher to a simple algebraic system which can be solved by known algebraic techniques. These attacks have been very successful against a variety of stream ciphers and major efforts (for example eSTREAM project) are underway to design and analyze new stream ciphers. These attacks have also raised some concerns about the security of popular block ciphers. In this thesis, apart from designing new stream ciphers, we focus on analyzing popular nonlinear transformations (Boolean functions and S-boxes) used in block and stream ciphers for various cryptographic properties, in particular their resistance against algebraic attacks. The main contribution of this work is the design of two new stream ciphers and a thorough analysis of the algebraic immunity of Boolean functions and S-boxes based on power mappings. First we present WG, a family of new stream ciphers designed to obtain a keystream with guaranteed randomness properties. We show how to obtain a mathematical description of a WG stream cipher for the desired randomness properties and security level, and then how to translate this description into a practical hardware design. Next we describe the design of a new RC4-like stream cipher suitable for high speed software applications. The design is compared with original RC4 stream cipher for both security and speed. The second part of this thesis closely examines the algebraic immunity of Boolean functions and S-boxes based on power mappings. We derive meaningful upper bounds on the algebraic immunity of cryptographically significant Boolean power functions and show that for large input sizes these functions have very low algebraic immunity. To analyze the algebraic immunity of S-boxes based on power mappings, we focus on calculating the bi-affine and quadratic equations they satisfy. We present two very efficient algorithms for this purpose and give new S-box constructions that guarantee zero bi-affine and quadratic equations. We also examine these S-boxes for their resistance against linear and differential attacks and provide a list of S-boxes based on power mappings that offer high resistance against linear, differential, and algebraic attacks. Finally we investigate the algebraic structure of S-boxes used in AES and DES by deriving their equivalent algebraic descriptions.
2

Design of Stream Ciphers and Cryptographic Properties of Nonlinear Functions

Nawaz, Yassir January 2007 (has links)
Block and stream ciphers are widely used to protect the privacy of digital information. A variety of attacks against block and stream ciphers exist; the most recent being the algebraic attacks. These attacks reduce the cipher to a simple algebraic system which can be solved by known algebraic techniques. These attacks have been very successful against a variety of stream ciphers and major efforts (for example eSTREAM project) are underway to design and analyze new stream ciphers. These attacks have also raised some concerns about the security of popular block ciphers. In this thesis, apart from designing new stream ciphers, we focus on analyzing popular nonlinear transformations (Boolean functions and S-boxes) used in block and stream ciphers for various cryptographic properties, in particular their resistance against algebraic attacks. The main contribution of this work is the design of two new stream ciphers and a thorough analysis of the algebraic immunity of Boolean functions and S-boxes based on power mappings. First we present WG, a family of new stream ciphers designed to obtain a keystream with guaranteed randomness properties. We show how to obtain a mathematical description of a WG stream cipher for the desired randomness properties and security level, and then how to translate this description into a practical hardware design. Next we describe the design of a new RC4-like stream cipher suitable for high speed software applications. The design is compared with original RC4 stream cipher for both security and speed. The second part of this thesis closely examines the algebraic immunity of Boolean functions and S-boxes based on power mappings. We derive meaningful upper bounds on the algebraic immunity of cryptographically significant Boolean power functions and show that for large input sizes these functions have very low algebraic immunity. To analyze the algebraic immunity of S-boxes based on power mappings, we focus on calculating the bi-affine and quadratic equations they satisfy. We present two very efficient algorithms for this purpose and give new S-box constructions that guarantee zero bi-affine and quadratic equations. We also examine these S-boxes for their resistance against linear and differential attacks and provide a list of S-boxes based on power mappings that offer high resistance against linear, differential, and algebraic attacks. Finally we investigate the algebraic structure of S-boxes used in AES and DES by deriving their equivalent algebraic descriptions.
3

Neurone abstrait : une formalisation de l’intégration dendritique et ses propriétés algébriques / Abstract neuron : formalizing dendritic integration and algebraic properties

Guinaudeau, Ophélie 11 January 2019 (has links)
Les neurones biologiques communiquent par le biais d’impulsions électriques, appelées spikes, et les fonctions cérébrales émergent notamment de la coordination entre les réceptions et émissions de ces spikes. Par ailleurs, il est largement admis que la fonction de chaque neurone dépend de sa morphologie. Les dendrites conditionnent l’intégration spatio-temporelle des spikes reçus et influent sur les temps d’occurrence des spikes émis. Elles sont donc fondamentales pour l’étude in silico des mécanismes de coordination, et en particulier pour l’étude des assemblées de neurones. Les modèles de neurones existants prenant en compte les dendrites, sont généralement des modèles mathématiques détaillés, souvent à base d’équations différentielles, dont la simulation nécessite des ressources de calculs importantes. De plus, leur complexité intrinsèque rend difficile l’analyse et les preuves sur ces modèles. Dans cette thèse, nous proposons un modèle de neurone intégrant des dendrites d’une manière abstraite. Dans l’objectif d’ouvrir la porte aux méthodes formelles, nous établissons une définition rigoureuse du cadre de modélisation et mettons en évidence des propriétés algébriques remarquables de l’intégration dendritique. Nous avons notamment démontré qu’il est possible de réduire la structure d’un neurone en préservant sa fonction d’entrée/sortie. Nous avons ainsi révélé des classes d’équivalence dont nous savons déterminer un représentant canonique. En s’appuyant sur la théorie des catégories et par des morphismes de neurones judicieusement définis, nous avons ensuite analysé plus finement ces classes d’équivalence. Un résultat surprenant découle de ces propriétés : un simple ajout de délais dans les modèles informatiques de neurones permet de prendre en compte une intégration dendritique abstraite, sans représenter explicitement la structure arborescente des dendrites. À la racine de l’arborescence dendritique, la modélisation du soma contient inévitablement une équation différentielle lorsque l’on souhaite préserver l’essence du fonctionnement biologique. Ceci impose de combiner une vision analytique avec la vision algébrique. Néanmoins, grâce à une étape préalable de discrétisation temporelle, nous avons également implémenté un neurone complet en Lustre qui est un langage formel autorisant des preuves par model checking. Globalement, nous apportons dans cette thèse un premier pas encourageant vers une formalisation complète des neurones, avec des propriétés remarquables sur l’intégration dendritique. / Biological neurons communicate by means of electrical impulses, called spikes. Brain functions emerge notably from reception and emission coordination between those spikes. Furthermore, it is widely accepted that the function of each neuron depends on its morphology. In particular, dendrites perform the spatio-temporal integration of received spikes and affect the occurrence of emitted spikes. Dendrites are therefore fundamental for in silico studies of coordination mechanisms, and especially for the study of so-called neuron assemblies. Most of existing neuron models taking into account dendrites are detailed mathematical models, usually based on differential equations, whose simulations require significant computing resources. Moreover, their intrinsic complexity makes difficult the analysis and proofs on such models. In this thesis, we propose an abstract neuron model integrating dendrites. In order to pave the way to formal methods, we establish a rigorous definition of the modeling framework and highlight remarkable algebraic properties of dendritic integration. In particular, we have demonstrated that it is possible to reduce a neuron structure while preserving its input/output function. We have thus revealed equivalence classes with a canonical representative. Based on category theory and thanks to properly defined neuron morphisms, we then analyzed these equivalence classes in more details. A surprising result derives from these properties: simply adding delays in neuron computational models is sufficient to represent an abstract dendritic integration, without explicit tree structure representation of dendrites. At the root of the dendritic tree, soma modeling inevitably contains a differential equation in order to preserve the biological functioning essence. This requires combining an analytical vision with the algebraic vision. Nevertheless, thanks to a preliminary step of temporal discretization, we have also implemented a complete neuron in Lustre which is a formal language allowing proofs by model checking. All in all, we bring in this thesis an encouraging first step towards a complete neuron formalization, with remarkable properties on dendritic integration.
4

Algebraic Properties of Endomorphisms of Abelian Groups and Rings

Slagle, Johnnie George 01 May 1968 (has links)
The main objective of the thesis was to extend the definition of an M-Group to what is called an M-Ring. From this extension a system called an expanded ring follows naturally. To facilitate the development of the expanded ring, chapter I is devoted to developing properties on systems that are not quite rings where many interesting examples are constructed. In chapter II the definition of an M-Ring is given and some of its properties are derived. In chapter III some of the properties of expanded rings are proved, and examples of expanded rings are given to show their existence.

Page generated in 0.0867 seconds