Spelling suggestions: "subject:"algorithmes GLOSS"" "subject:"lgorithmes GLOSS""
1 |
Learning algorithms for sparse classification / Algorithmes d'estimation pour la classification parcimonieuseSanchez Merchante, Luis Francisco 07 June 2013 (has links)
Cette thèse traite du développement d'algorithmes d'estimation en haute dimension. Ces algorithmes visent à résoudre des problèmes de discrimination et de classification, notamment, en incorporant un mécanisme de sélection des variables pertinentes. Les contributions de cette thèse se concrétisent par deux algorithmes, GLOSS pour la discrimination et Mix-GLOSS pour la classification. Tous les deux sont basés sur le résolution d'une régression régularisée de type "optimal scoring" avec une formulation quadratique de la pénalité group-Lasso qui encourage l'élimination des descripteurs non-significatifs. Les fondements théoriques montrant que la régression de type "optimal scoring" pénalisée avec un terme "group-Lasso" permet de résoudre un problème d'analyse discriminante linéaire ont été développés ici pour la première fois. L'adaptation de cette théorie pour la classification avec l'algorithme EM n'est pas nouvelle, mais elle n'a jamais été détaillée précisément pour les pénalités qui induisent la parcimonie. Cette thèse démontre solidement que l'utilisation d'une régression de type "optimal scoring" pénalisée avec un terme "group-Lasso" à l'intérieur d'une boucle EM est possible. Nos algorithmes ont été testés avec des bases de données réelles et artificielles en haute dimension avec des résultats probants en terme de parcimonie, et ce, sans compromettre la performance du classifieur. / This thesis deals with the development of estimation algorithms with embedded feature selection the context of high dimensional data, in the supervised and unsupervised frameworks. The contributions of this work are materialized by two algorithms, GLOSS for the supervised domain and Mix-GLOSS for unsupervised counterpart. Both algorithms are based on the resolution of optimal scoring regression regularized with a quadratic formulation of the group-Lasso penalty which encourages the removal of uninformative features. The theoretical foundations that prove that a group-Lasso penalized optimal scoring regression can be used to solve a linear discriminant analysis bave been firstly developed in this work. The theory that adapts this technique to the unsupervised domain by means of the EM algorithm is not new, but it has never been clearly exposed for a sparsity-inducing penalty. This thesis solidly demonstrates that the utilization of group-Lasso penalized optimal scoring regression inside an EM algorithm is possible. Our algorithms have been tested with real and artificial high dimensional databases with impressive resuits from the point of view of the parsimony without compromising prediction performances.
|
Page generated in 0.0278 seconds