• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of algorithms for the automatic characterization of marine dune morphology and dynamics / Description morphométrique de la dynamique des dunes et bancs de sable sous-marins en vue de leur classification

Ogor, Julien 11 June 2018 (has links)
Les dunes marines sont de grandes structures sédimentaires qui, ensemble, couvrent de larges zones appelées champs de dunes. Des dunes ont été découvertes dans tous les océans, de la côte jusqu'aux talus continentaux. Leur forme et mobilité sont des témoins du lien étroit qui existe entre le transport sédimentaire, l'hydrodynamique (courants marins) et la topographie du fond. L'étude des dunes est intéressante scientifiquement parlant, mais elle est également motivée par des enjeux économiques et environnementaux. Les dunes peuvent être étudiées de deux manières : La modélisation et l'analyse de données de terrain (granulométrie, courantométrie, données sismiques, données bathymétriques). Ces deux approches sont très différentes mais complémentaires. Avec l'amélioration des données Sondeur Multi-Faisceaux (SMF), il est maintenant possible de visualiser la morphologie des dunes et de suivre leur évolution de manière plus détaillée. Plusieurs méthodes automatiques d'analyse de la morphologie et de la dynamique des dunes ont été développées pour analyser les Modèles Numériques de Terrain (MNTs) construits à partir de ces données SMF. Pourtant, aucun ne permet d'estimer les valeurs de descripteurs morphologiques et dynamiques pour chaque dune. L'analyse et l'évaluation de ces descripteurs restent régionales avec le découpage des MNTs en régions rectangulaires. Seul un traitement manuel permet d'estimer ces descripteurs pour chaque dune. L'objectif de cette thèse est de développer des algorithmes automatiques permettant de quanti er la morphologie et la dynamique de chaque dune. Pour ce faire, une représentation des données SMF sous forme d'une tessellation triangulaire a été préférée au classique MNT régulier. Tout d'abord, les dunes doivent être extraites de la topographie du fond marin. Un algorithme par accroissement de régions avec adaptation de l'échelle d'analyse, issu de la géomorphométrie est proposé. Les crêtes de dunes sont d'abord extraites en combinant un algorithme de simplification de tessellations avec un algorithme d'extraction de lignes de crête. La résolution de la tessellation est adaptée par l'algorithme de simplification afin de faciliter l'extraction des lignes de crête. Les lignes de crête sont des objets bien définis en géométrie différentielle. Leur extraction s'appuie sur l'interprétation de cette définition appliquée à des modèles discrets du fond (tessellations). Les crêtes servent d'embryons à l'algorithme d'extraction des dunes. L'estimation des paramètres morphologiques des dunes (longueur, largeur, hauteur, etc.) découle de l'extraction automatique des dunes. L'utilisation d'une méthode de recalage non rigide (isométrique) pour la quantification de la dynamique est discutée. Des tessellations représentant la topographie d'un même champ de dunes à différents moments sont analysées par l'algorithme d'extraction des dunes. Ensuite, une dune est associée à une dune d'une autre tessellation qui lui correspond (même dune à un autre instant). La dynamique de chaque dune est quantifiée à partir des résultats de l'algorithme de recalage : les transformations permettant d'aligner différentes représentations d'une dune. / Marine dunes are large sedimentary mounds often organized in dunefields. Theyhave been discovered in oceans all around the globe, from continental rises to nearshore areas. These mobile seafloor structures reflect the unique and complex relationship between the sediment, the seafloor topography and the hydrodynamics (currents). Dunes are not only interesting at a scientific level. In fact, their study is also motivated by economic, safety and environmental reasons. The study of dunes can be divided into two complementary approaches: Modelling and analysis of in situ data (granulometry, current, bathymetric data).The increased quality of MultiBeam EchoSounder (MBES) data allows scientists to monitor and visualize the complexity of, both, dune morphology and dynamics. Au-tomatic methods to characterize dune morphology and dynamics using Digital TerrainModels (DTMs) have already been proposed. But, none does it at the dune scale. Mor-phological and dynamical descriptors are estimated for patches of the dunefield. Today, the evaluation of such descriptors for each dune can only be achieved manually.The objective of this thesis is to design automatic algorithms for the quantification of dune morphology and dynamics. A representation of MBES data as triangular meshes has been preferred to the usual gridded DTMs. The first stage consists of delineating dunes in the seafloor. A scale adaptative, region growing algorithm based on geomorphometry is proposed. The combination of mesh implification and crest extraction algorithms enables to accurately recover dune crest lines. The mesh simplification facilitates the crest extraction by adapting the mesh resolution. Crest extraction is based on the discrete interpretation of the definition of crest lines in differential geometry. The crests are, then, used as seed regions by the dune extraction algorithm.
2

Information fusion and decision-making using belief functions : application to therapeutic monitoring of cancer / Fusion de l’information et prise de décisions à l’aide des fonctions de croyance : application au suivi thérapeutique du cancer

Lian, Chunfeng 27 January 2017 (has links)
La radiothérapie est une des méthodes principales utilisée dans le traitement thérapeutique des tumeurs malignes. Pour améliorer son efficacité, deux problèmes essentiels doivent être soigneusement traités : la prédication fiable des résultats thérapeutiques et la segmentation précise des volumes tumoraux. La tomographie d’émission de positrons au traceur Fluoro- 18-déoxy-glucose (FDG-TEP) peut fournir de manière non invasive des informations significatives sur les activités fonctionnelles des cellules tumorales. Les objectifs de cette thèse sont de proposer: 1) des systèmes fiables pour prédire les résultats du traitement contre le cancer en utilisant principalement des caractéristiques extraites des images FDG-TEP; 2) des algorithmes automatiques pour la segmentation de tumeurs de manière précise en TEP et TEP-TDM. La théorie des fonctions de croyance est choisie dans notre étude pour modéliser et raisonner des connaissances incertaines et imprécises pour des images TEP qui sont bruitées et floues. Dans le cadre des fonctions de croyance, nous proposons une méthode de sélection de caractéristiques de manière parcimonieuse et une méthode d’apprentissage de métriques permettant de rendre les classes bien séparées dans l’espace caractéristique afin d’améliorer la précision de classification du classificateur EK-NN. Basées sur ces deux études théoriques, un système robuste de prédiction est proposé, dans lequel le problème d’apprentissage pour des données de petite taille et déséquilibrées est traité de manière efficace. Pour segmenter automatiquement les tumeurs en TEP, une méthode 3-D non supervisée basée sur le regroupement évidentiel (evidential clustering) et l’information spatiale est proposée. Cette méthode de segmentation mono-modalité est ensuite étendue à la co-segmentation dans des images TEP-TDM, en considérant que ces deux modalités distinctes contiennent des informations complémentaires pour améliorer la précision. Toutes les méthodes proposées ont été testées sur des données cliniques, montrant leurs meilleures performances par rapport aux méthodes de l’état de l’art. / Radiation therapy is one of the most principal options used in the treatment of malignant tumors. To enhance its effectiveness, two critical issues should be carefully dealt with, i.e., reliably predicting therapy outcomes to adapt undergoing treatment planning for individual patients, and accurately segmenting tumor volumes to maximize radiation delivery in tumor tissues while minimize side effects in adjacent organs at risk. Positron emission tomography with radioactive tracer fluorine-18 fluorodeoxyglucose (FDG-PET) can noninvasively provide significant information of the functional activities of tumor cells. In this thesis, the goal of our study consists of two parts: 1) to propose reliable therapy outcome prediction system using primarily features extracted from FDG-PET images; 2) to propose automatic and accurate algorithms for tumor segmentation in PET and PET-CT images. The theory of belief functions is adopted in our study to model and reason with uncertain and imprecise knowledge quantified from noisy and blurring PET images. In the framework of belief functions, a sparse feature selection method and a low-rank metric learning method are proposed to improve the classification accuracy of the evidential K-nearest neighbor classifier learnt by high-dimensional data that contain unreliable features. Based on the above two theoretical studies, a robust prediction system is then proposed, in which the small-sized and imbalanced nature of clinical data is effectively tackled. To automatically delineate tumors in PET images, an unsupervised 3-D segmentation based on evidential clustering using the theory of belief functions and spatial information is proposed. This mono-modality segmentation method is then extended to co-segment tumor in PET-CT images, considering that these two distinct modalities contain complementary information to further improve the accuracy. All proposed methods have been performed on clinical data, giving better results comparing to the state of the art ones.

Page generated in 0.0594 seconds