Spelling suggestions: "subject:"algorithmes d'expectationmaximisation"" "subject:"algorithmes d'expectationmaximization""
1 |
Fouille de dynamiques multivariées, application à des données temporelles en cardiologie.Dumont, Jerome 09 October 2008 (has links) (PDF)
Ce mémoire s'intéresse à l'analyse de dynamiques de séries temporelles observées en cardiologie. La solution proposée se décompose en deux étapes. La première consiste à extraire l'information utile en segmentant chaque battement cardiaque à l'aide d'une décomposition en ondelettes, adaptée de la littérature. Le problème difficile de l'optimisation des seuils et des fenêtres temporelles est résolu à l'aide d'algorithmes évolutionnaires. La deuxième étape s'appuie sur les modèles Semi-Markovien Cachés pour représenter les séries temporelles composées de l'ensemble des variables extraites. Un algorithme de classification non-supervisée est proposé pour retrouver les groupements naturels. Appliquée à la détection des épisodes ischémiques et à l'analyse d'ECG d'efforts de patients atteints du syndrome de Brugada (pour la distinction des patients symptomatiques et asymptomatiques), la solution proposée montre des performances supérieures aux approches plus traditionnelles.
|
2 |
Sound source localization with data and model uncertainties using the EM and Evidential EM algorithms / Estimation de sources acoustiques avec prise en compte de l'incertitude de propagationWang, Xun 09 December 2014 (has links)
Ce travail de thèse se penche sur le problème de la localisation de sources acoustiques à partir de signaux déterministes et aléatoires mesurés par un réseau de microphones. Le problème est résolu dans un cadre statistique, par estimation via la méthode du maximum de vraisemblance. La pression mesurée par un microphone est interprétée comme étant un mélange de signaux latents émis par les sources. Les positions et les amplitudes des sources acoustiques sont estimées en utilisant l’algorithme espérance-maximisation (EM). Dans cette thèse, deux types d’incertitude sont également pris en compte : les positions des microphones et le nombre d’onde sont supposés mal connus. Ces incertitudes sont transposées aux données dans le cadre théorique des fonctions de croyance. Ensuite, les positions et les amplitudes des sources acoustiques peuvent être estimées en utilisant l’algorithme E2M, qui est une variante de l’algorithme EM pour les données incertaines.La première partie des travaux considère le modèle de signal déterministe sans prise en compte de l’incertitude. L’algorithme EM est utilisé pour estimer les positions et les amplitudes des sources. En outre, les résultats expérimentaux sont présentés et comparés avec le beamforming et la holographie optimisée statistiquement en champ proche (SONAH), ce qui démontre l’avantage de l’algorithme EM. La deuxième partie considère le problème de l’incertitude du modèle et montre comment les incertitudes sur les positions des microphones et le nombre d’onde peuvent être quantifiées sur les données. Dans ce cas, la fonction de vraisemblance est étendue aux données incertaines. Ensuite, l’algorithme E2M est utilisé pour estimer les sources acoustiques. Finalement, les expériences réalisées sur les données réelles et simulées montrent que les algorithmes EM et E2M donnent des résultats similaires lorsque les données sont certaines, mais que ce dernier est plus robuste en présence d’incertitudes sur les paramètres du modèle. La troisième partie des travaux présente le cas de signaux aléatoires, dont l’amplitude est considérée comme une variable aléatoire gaussienne. Dans le modèle sans incertitude, l’algorithme EM est utilisé pour estimer les sources acoustiques. Dans le modèle incertain, les incertitudes sur les positions des microphones et le nombre d’onde sont transposées aux données comme dans la deuxième partie. Enfin, les positions et les variances des amplitudes aléatoires des sources acoustiques sont estimées en utilisant l’algorithme E2M. Les résultats montrent ici encore l’avantage d’utiliser un modèle statistique pour estimer les sources en présence, et l’intérêt de prendre en compte l’incertitude sur les paramètres du modèle. / This work addresses the problem of multiple sound source localization for both deterministic and random signals measured by an array of microphones. The problem is solved in a statistical framework via maximum likelihood. The pressure measured by a microphone is interpreted as a mixture of latent signals emitted by the sources; then, both the sound source locations and strengths can be estimated using an expectation-maximization (EM) algorithm. In this thesis, two kinds of uncertainties are also considered: on the microphone locations and on the wave number. These uncertainties are transposed to the data in the belief functions framework. Then, the source locations and strengths can be estimated using a variant of the EM algorithm, known as Evidential EM (E2M) algorithm. The first part of this work begins with the deterministic signal model without consideration of uncertainty. The EM algorithm is then used to estimate the source locations and strengths : the update equations for the model parameters are provided. Furthermore, experimental results are presented and compared with the beamforming and the statistically optimized near-field holography (SONAH), which demonstrates the advantage of the EM algorithm. The second part raises the issue of model uncertainty and shows how the uncertainties on microphone locations and wave number can be taken into account at the data level. In this case, the notion of the likelihood is extended to the uncertain data. Then, the E2M algorithm is used to solve the sound source estimation problem. In both the simulation and real experiment, the E2M algorithm proves to be more robust in the presence of model and data uncertainty. The third part of this work considers the case of random signals, in which the amplitude is modeled by a Gaussian random variable. Both the certain and uncertain cases are investigated. In the former case, the EM algorithm is employed to estimate the sound sources. In the latter case, microphone location and wave number uncertainties are quantified similarly to the second part of the thesis. Finally, the source locations and the variance of the random amplitudes are estimated using the E2M algorithm.
|
Page generated in 0.137 seconds