Spelling suggestions: "subject:"algorithmes dde recherche para voisinage"" "subject:"algorithmes dee recherche para voisinage""
1 |
Simulation and optimization models for scheduling and balancing the public bicycle-sharing systems / Modéles de simulation et d'optimisation pour l'ordonnancement et l'équilibrage des systèmes de vélos en libre-serviceKadri, Ahmed Abdelmoumene 11 December 2015 (has links)
Les enjeux du développement durable, le réchauffement climatique, la pollution dans les grandes villes, la congestion et les nuisances sonores, l'augmentation des prix de carburants, sont parmi des nombreux facteurs qui incitent les pays développés à l'innovation dans les transports publics. Dans ce contexte, l'introduction des systèmes de vélos en libre-service, au cours de ces dernières années, est une des solutions adoptées par de nombreuses grandes villes. Malgré leur succès fulgurant dans le monde entier, il existe peu d'études fondamentales sur ce type transport urbain. Pourtant, leur exploitation et leur management par des opérateurs soulèvent de nombreuses questions notamment d'ordre opérationnel. Dans ce contexte, cette thèse s'adresse aux problèmes d'ordonnancement et de rééquilibrage des stations de vélos en libre-service. Ce sont des problèmes cruciaux pour la qualité de service et la viabilité économique de tels systèmes. Le rééquilibrage consiste à redistribuer le nombre de vélos entre les différentes stations afin de satisfaire au mieux les demandes des usagers. Cette régulation se fait souvent par le biais de véhicules spécifiques qui font des tournées autour des différentes stations. Ainsi, deux problèmes d'optimisation difficiles se posent : la recherche de la meilleure tournée du véhicule de régulation (ordonnancement de la tournée) et la détermination des nombres de véhicules à utiliser (rééquilibrage des stations). Dans cette optique, les travaux de cette thèse constituent une contribution à la modélisation et à l'optimisation de performances des systèmes de vélos en libre-service en vue de leur rééquilibrage et leur ordonnancement. Plusieurs méthodes d'optimisation et ont été développées et testées. De telles méthodes incorporent différentes approches de simulation ou d'optimisation comme les réseaux de Petri, les algorithmes génétiques, les algorithmes gloutons, les algorithmes de recherche par voisinage, la méthode arborescente de branch-and-bound, l'élaboration des bornes supérieures et inférieures, etc. Différentes facettes du problème ont été étudiées : le cas statique, le cas dynamique, l'ordonnancement et le rééquilibrage avec un seul (ou multiple) véhicule(s). Afin de montrer la pertinence de nos approches, la thèse comporte également plusieurs applications réelles et expérimentations / In our days, developed countries have to face many public transport problems, including traffic congestion, air pollution, global oil prices and global warming. In this context, Public Bike sharing systems are one of the solutions that have been recently implemented in many big cities around the world. Despite their apparent success, the exploitation and management of such transportation systems imply crucial operational challenges that confronting the operators while few scientific works are available to support such complex dynamical systems. In this context, this thesis addresses the scheduling and balancing in public bicycle-sharing systems. These problems are the most crucial questions for their operational efficiency and economic viability. Bike sharing systems are balanced by distributing bicycles from one station to another. This procedure is generally ensured by using specific redistribution vehicles. Therefore, two hard optimization problems can be considered: finding a best tour for the redistribution vehicles (scheduling) and the determination of the numbers of bicycles to be assigned and of the vehicles to be used (balancing of the stations). In this context, this thesis constitutes a contribution to modelling and optimizing the bicycle sharing systems' performances in order to ensure a coherent scheduling and balancing strategies. Several optimization methods have been proposed and tested. Such methods incorporate different approaches of simulation or optimization like the Petri nets, the genetic algorithms, the greedy search algorithms, the local search algorithms, the arborescent branch-and-bound algorithms, the elaboration of upper and lower bounds, ... Different variants of the problem have been studied: the static mode, the dynamic mode, the scheduling and the balancing by using a single or multiple vehicle(s). In order to demonstrate the coherence and the suitability of our approaches, the thesis contains several real applications and experimentations
|
Page generated in 0.0906 seconds