Spelling suggestions: "subject:"algorithmiques parallèle"" "subject:"algorithmiques parallèlement""
1 |
Cellular matrix for parallel k-means and local search to Euclidean grid matching / Matrice cellulaire pour des algorithmes parallèles de k-means et de recherche locale appliqués à des problèmes euclidiens d’appariement de graphesWang, Hongjian 03 December 2015 (has links)
Dans cette thèse, nous proposons un modèle de calcul parallèle, appelé « matrice cellulaire », pour apporter des réponses aux problématiques de calcul parallèle appliqué à la résolution de problèmes d’appariement de graphes euclidiens. Ces problèmes d’optimisation NP-difficiles font intervenir des données réparties dans le plan et des structures élastiques représentées par des graphes qui doivent s’apparier aux données. Ils recouvrent des problèmes connus sous des appellations diverses telles que geometric k-means, elastic net, topographic mapping, elastic image matching. Ils permettent de modéliser par exemple le problème du voyageur de commerce euclidien, le problème du cycle médian, ainsi que des problèmes de mise en correspondance d’images. La contribution présentée est divisée en trois parties. Dans la première partie, nous présentons le modèle de matrice cellulaire qui partitionne les données et définit le niveau de granularité du calcul parallèle. Nous présentons une boucle générique de calcul parallèle qui modélise le principe des projections de graphes et de leur appariement. Dans la deuxième partie, nous appliquons le modèle de calcul parallèle aux algorithmes de k-means avec topologie dans le plan. Les algorithmes proposés sont appliqués au voyageur de commerce, à la génération de maillage structuré et à la segmentation d'image suivant le concept de superpixel. L’approche est nommée superpixel adaptive segmentation map (SPASM). Dans la troisième partie, nous proposons un algorithme de recherche locale parallèle, appelé distributed local search (DLS). La solution du problème résulte des opérations locales sur les structures et les données réparties dans le plan, incluant des évaluations, des recherches de voisinage, et des mouvements structurés. L’algorithme est appliqué à des problèmes d’appariement de graphe tels que le stéréo-matching et le problème de flot optique. / In this thesis, we propose a parallel computing model, called cellular matrix, to provide answers to problematic issues of parallel computation when applied to Euclidean graph matching problems. These NP-hard optimization problems involve data distributed in the plane and elastic structures represented by graphs that must match the data. They include problems known under various names, such as geometric k-means, elastic net, topographic mapping, and elastic image matching. The Euclidean traveling salesman problem (TSP), the median cycle problem, and the image matching problem are also examples that can be modeled by graph matching. The contribution presented is divided into three parts. In the first part, we present the cellular matrix model that partitions data and defines the level of granularity of parallel computation. We present a generic loop for parallel computations, and this loop models the projection between graphs and their matching. In the second part, we apply the parallel computing model to k-means algorithms in the plane extended with topology. The proposed algorithms are applied to the TSP, structured mesh generation, and image segmentation following the concept of superpixel. The approach is called superpixel adaptive segmentation map (SPASM). In the third part, we propose a parallel local search algorithm, called distributed local search (DLS). The solution results from the many local operations, including local evaluation, neighborhood search, and structured move, performed on the distributed data in the plane. The algorithm is applied to Euclidean graph matching problems including stereo matching and optical flow.
|
Page generated in 0.0771 seconds