• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The functionality of spatial and time domain artificial neural models

Capanni, Niccolo Francesco January 2006 (has links)
This thesis investigates the functionality of the units used in connectionist Artificial Intelligence systems. Artificial Neural Networks form the foundation of the research and their units, Artificial Neurons, are first compared with alternative models. This initial work is mainly in the spatial-domain and introduces a new neural model, termed a Taylor Series neuron. This is designed to be flexible enough to assume most mathematical functions. The unit is based on Power Series theory and a specifically implemented Taylor Series neuron is demonstrated. These neurons are of particular usefulness in evolutionary networks as they allow the complexity to increase without adding units. Training is achieved via various traditiona and derived methods based on the Delta Rule, Backpropagation, Genetic Algorithms and associated evolutionary techniques. This new neural unit has been presented as a controllable and more highly functional alternative to previous models. The work on the Taylor Series neuron moved into time-domain behaviour and through the investigation of neural oscillators led to an examination of single-celled intelligence from which the later work developed. Connectionist approaches to Artificial Intelligence are almost always based on Artificial Neural Networks. However, another route towards Parallel Distributed Processing was introduced. This was inspired by the intelligence displayed by single-celled creatures called Protoctists (Protists). A new system based on networks of interacting proteins was introduced. These networks were tested in pattern-recognition and control tasks in the time-domain and proved more flexible than most neuron models. They were trained using a Genetic Algorithm and a derived Backpropagation Algorithm. Termed "Artificial BioChemical Networks" (ABN) they have been presented as an alternative approach to connectionist systems.
12

La libre circulation et la protection des données à caractère personnel sur Internet / Free flow of data and personal data protection on the Internet

Malekian, Hajar 15 November 2017 (has links)
La protection des données à caractère personnel (DCP) constitue un droit fondamental autonome au sein de l’Union européenne (article 8 de la Charte des droits fondamentaux de l’Union européenne). En outre, la libre circulation de ces données et des services de la société de l’information, notamment des plateformes en ligne, est primordiale pour le développement de l’économie numérique dans le cadre du marché unique numérique européen. C’est dans ce contexte qu’un point d’équilibre entre la libre circulation et la protection des DCP fait l’objet du cadre juridique européen et français en matière de protection des DCP. Ainsi, dans cette étude, nous nous sommes intéressés en particulier aux enjeux liés à la mise en balance de ces deux intérêts. Ces enjeux suscitent une attention particulière notamment à l’ère des plateformes en ligne, du Big Data et de l’exploitation en masse des données à travers des algorithmes sophistiqués dotés de plus en plus d’autonomie et d’intelligence / Free flow of data and personal data protection on the Internet Protection of personal data is an autonomous fundamental right within the European Union (Article 8 of the Charter of Fundamental Rights of European Union). Moreover, free flow of personal data and free movement of information society services in particular online platforms is essential for the development of digital single market in European Union. The balance between free movement of data and personal data protection is subject of the European legal framework. However, the main challenge still remains to strike the right balance between effective personal data protection and free flow of this data and information society services. This balance is not an easy task especially in the age of online platforms, Big Data and processing algorithms like Machine Learning and Deep Learning.
13

Artificial development of neural-symbolic networks

Townsend, Joseph Paul January 2014 (has links)
Artificial neural networks (ANNs) and logic programs have both been suggested as means of modelling human cognition. While ANNs are adaptable and relatively noise resistant, the information they represent is distributed across various neurons and is therefore difficult to interpret. On the contrary, symbolic systems such as logic programs are interpretable but less adaptable. Human cognition is performed in a network of biological neurons and yet is capable of representing symbols, and therefore an ideal model would combine the strengths of the two approaches. This is the goal of Neural-Symbolic Integration [4, 16, 21, 40], in which ANNs are used to produce interpretable, adaptable representations of logic programs and other symbolic models. One neural-symbolic model of reasoning is SHRUTI [89, 95], argued to exhibit biological plausibility in that it captures some aspects of real biological processes. SHRUTI's original developers also suggest that further biological plausibility can be ascribed to the fact that SHRUTI networks can be represented by a model of genetic development [96, 120]. The aims of this thesis are to support the claims of SHRUTI's developers by producing the first such genetic representation for SHRUTI networks and to explore biological plausibility further by investigating the evolvability of the proposed SHRUTI genome. The SHRUTI genome is developed and evolved using principles from Generative and Developmental Systems and Artificial Development [13, 105], in which genomes use indirect encoding to provide a set of instructions for the gradual development of the phenotype just as DNA does for biological organisms. This thesis presents genomes that develop SHRUTI representations of logical relations and episodic facts so that they are able to correctly answer questions on the knowledge they represent. The evolvability of the SHRUTI genomes is limited in that an evolutionary search was able to discover genomes for simple relational structures that did not include conjunction, but could not discover structures that enabled conjunctive relations or episodic facts to be learned. Experiments were performed to understand the SHRUTI fitness landscape and demonstrated that this landscape is unsuitable for navigation using an evolutionary search. Complex SHRUTI structures require that necessary substructures must be discovered in unison and not individually in order to yield a positive change in objective fitness that informs the evolutionary search of their discovery. The requirement for multiple substructures to be in place before fitness can be improved is probably owed to the localist representation of concepts and relations in SHRUTI. Therefore this thesis concludes by making a case for switching to more distributed representations as a possible means of improving evolvability in the future.

Page generated in 0.131 seconds