Spelling suggestions: "subject:"algorithms. computer vision."" "subject:"algorithms. coomputer vision.""
1 |
Efficiently mapping high-performance early vision algorithms onto multicore embedded platformsApewokin, Senyo. January 2009 (has links)
Thesis (M. S.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Wills, Scott; Committee Co-Chair: Wills, Linda; Committee Member: Bader, David; Committee Member: Davis, Jeff; Committee Member: Hamblen, James; Committee Member: Lanterman, Aaron.
|
2 |
Human layout estimation using structured output learningMittal, Arpit January 2012 (has links)
In this thesis, we investigate the problem of human layout estimation in unconstrained still images. This involves predicting the spatial configuration of body parts. We start our investigation with pictorial structure models and propose an efficient method of model fitting using skin regions. To detect the skin, we learn a colour model locally from the image by detecting the facial region. The resulting skin detections are also used for hand localisation. Our next contribution is a comprehensive dataset of 2D hand images. We collected this dataset from publicly available image sources, and annotated images with hand bounding boxes. The bounding boxes are not axis aligned, but are rather oriented with respect to the wrist. Our dataset is quite exhaustive as it includes images of different hand shapes and layout configurations. Using our dataset, we train a hand detector that is robust to background clutter and lighting variations. Our hand detector is implemented as a two-stage system. The first stage involves proposing hand hypotheses using complementary image features, which are then evaluated by the second stage classifier. This improves both precision and recall and results in a state-of-the-art hand detection method. In addition we develop a new method of non-maximum suppression based on super-pixels. We also contribute an efficient training algorithm for structured output ranking. In our algorithm, we reduce the time complexity of an expensive training component from quadratic to linear. This algorithm has a broad applicability and we use it for solving human layout estimation and taxonomic multiclass classification problems. For human layout, we use different body part detectors to propose part candidates. These candidates are then combined and scored using our ranking algorithm. By applying this bottom-up approach, we achieve accurate human layout estimation despite variations in viewpoint and layout configuration. In the multiclass classification problem, we define the misclassification error using a class taxonomy. The problem then reduces to a structured output ranking problem and we use our ranking method to optimise it. This allows inclusion of semantic knowledge about the classes and results in a more meaningful classification system. Lastly, we substantiate our ranking algorithm with theoretical proofs and derive the generalisation bounds for it. These bounds prove that the training error reduces to the lowest possible error asymptotically.
|
3 |
The acquisition of coarse gaze estimates in visual surveillanceBenfold, Ben January 2011 (has links)
This thesis describes the development of methods for automatically obtaining coarse gaze direction estimates for pedestrians in surveillance video. Gaze direction estimates are beneficial in the context of surveillance as an indicator of an individual's intentions and their interest in their surroundings and other people. The overall task is broken down into two problems. The first is that of tracking large numbers of pedestrians in low resolution video, which is required to identify the head regions within video frames. The second problem is to process the extracted head regions and estimate the direction in which the person is facing as a coarse estimate of their gaze direction. The first approach for head tracking combines image measurements from HOG head detections and KLT corner tracking using a Kalman filter, and can track the heads of many pedestrians simultaneously to output head regions with pixel-level accuracy. The second approach uses Markov-Chain Monte-Carlo Data Association (MCMCDA) within a temporal sliding window to provide similarly accurate head regions, but with improved speed and robustness. The improved system accurately tracks the heads of twenty pedestrians in 1920x1080 video in real-time and can track through total occlusions for short time periods. The approaches for gaze direction estimation all make use of randomised decision tree classifiers. The first develops classifiers for low resolution head images that are invariant to hair and skin colours using branch decisions based on abstract labels rather than direct image measurements. The second approach addresses higher resolution images using HOG descriptors and novel Colour Triplet Comparison (CTC) based branches. The final approach infers custom appearance models for individual scenes using weakly supervised learning over large datasets of approximately 500,000 images. A Conditional Random Field (CRF) models interactions between appearance information and walking directions to estimate gaze directions for head image sequences.
|
Page generated in 0.0736 seconds