• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mecanismos explicativos para RNAs como extração de conhecimento

CAMPOS, Paulemir Gonçalves January 2005 (has links)
Made available in DSpace on 2014-06-12T16:01:00Z (GMT). No. of bitstreams: 2 arquivo7132_1.pdf: 2088995 bytes, checksum: aa5d2a0c53668dd8ebc5d10ae3ada3a2 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2005 / As Redes Neurais Artificiais (RNAs), um dos principais modelos de computação em Inteligência Artificial (IA), vêm sendo largamente utilizadas nas diversas abordagens de previsão do comportamento dos dados, por exemplo, em processamento de sinais, reconhecimento de padrões, aproximação de função e também previsão de séries temporais. Isto porque as RNAs englobam muitas características desejáveis como boa capacidade de generalização, não linearidade, multivariáveis, não paramétricas, dentro de um esquema de implementação relativamente eficiente em termos de velocidade e exigência de memória computacional. Apesar do grande uso de RNAs para resolver vários tipos de problemas apresentando bom desempenho, o usuário geralmente quer entender como e porque a rede obteve uma dada saída em relação à entrada que lhe foi apresentada. Ou seja, a incapacidade de explicar como e porque a rede gera suas respostas é uma das principais críticas às RNAs, principalmente quando aplicadas em sistemas onde a segurança na operação seja um aspecto importante, tais como problemas de controle de usinas nucleares, controle do sistema de navegação de aeronaves, auxílio a cirurgias médicas, sistemas de diagnóstico médico e detecção de falhas mecânicas. Isto se deve ao fato do conhecimento está armazenado na topologia, nos pesos e quando usado no bias da rede, o que evidentemente dificulta a compreensão pelo usuário de como a rede encontrou a solução para um determinado problema. Segundo a literatura, a forma mais usual de se resolver esta deficiência é a partir da rede treinada extrair regras do tipo Se/Então. Note que, tais regras são bem mais aceitáveis pelos usuários por serem muito parecidas com a forma de representar o raciocínio humano. Logo, trata-se de uma maneira bastante plausível de se justificar as saídas apresentadas pela rede. Portanto, o objetivo principal deste trabalho é fazer um estudo comparativo entre diversos algoritmos, incluindo os quatro aqui propostos (destacando-se o Literal e o ProRulext), para extração de regras de redes MLP (Multilayer Perceptron) aplicadas à problemas de classificação de padrões e de previsão de séries temporais verificando qual(is) o(s) método(s) que obtém o conjunto de regras mais conciso e representativo das redes treinadas em cada um destes problemas

Page generated in 0.3168 seconds