• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An?lise multin?vel wavelet como fitness na sintonia de controladores utilizando meta-heur?sticas

Pires, Andr? Henrique Matias 06 December 2017 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2018-03-12T13:20:55Z No. of bitstreams: 1 AndreHenriqueMatiasPires_DISSERT.pdf: 5565361 bytes, checksum: f5665a81cdc1abafd016753cfb9016e6 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2018-03-13T20:49:03Z (GMT) No. of bitstreams: 1 AndreHenriqueMatiasPires_DISSERT.pdf: 5565361 bytes, checksum: f5665a81cdc1abafd016753cfb9016e6 (MD5) / Made available in DSpace on 2018-03-13T20:49:03Z (GMT). No. of bitstreams: 1 AndreHenriqueMatiasPires_DISSERT.pdf: 5565361 bytes, checksum: f5665a81cdc1abafd016753cfb9016e6 (MD5) Previous issue date: 2017-12-06 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior (CAPES) / O controle de sistemas din?micos apresenta-se como um desafio. Os m?todos tradicionalmente utilizados na sintonia apresentam a dificuldade em expressar as especifica??es pretendidas e conseguir encontrar controladores que atendam a esses requerimentos, sobretudo quando o caso exige controladores mais complexos, como no caso de problemas MIMO (Multiple Input Multiple Output). Devido ? crescente competitividade na ind?stria, torna-se imprescind?vel utilizar t?cnicas de sintonia mais eficientes e que de fato consigam encontrar controladores com desempenho pretendido. Pode-se, para isso, utilizar meta-heur?sticas, como Particle Swarm Optimization (PSO), Algoritmo Gen?tico (AG) e Algoritmo do Vagalume(AV) para a obten??o dos par?metros do controlador de acordo com uma fun??o de avalia??o, a qual deve conseguir, de fato, codificar o qu?o bom ? um dado controlador, expressando de forma adequada as especifica??es desejadas, de modo que a meta-heur?stica empregada consiga encontrar o controlador que melhor satisfa?a tal fun??o. Em vista disso, prop?e-se a utiliza??o da an?lise wavelet multin?veis, j? muito presente na literatura, voltada para outras aplica??es, sobretudo na an?lise de sinais, sons e imagens, para a confec??o de um ?ndice a ser utilizado como fun??o de avalia??o na otimiza??o de controladores. A an?lise wavelet permite a apreens?o de informa??es do comportamento e forma do sinal, informando frequ?ncia de um sinal ao longo do tempo, caracter?stica que pode ser desej?vel, na avalia??o e projeto de controladores sendo, assim, poss?vel avaliar separadamente o desempenho do transit?rio e do regime permanente. Foi feito um estudo de caso, encontrando o controle otimizado de um sistema MIMO de quatro tanques acoplados. Foi feito um estudo comparativo com outras fun??es de avalia??o apresentadas na literatura e com o m?todo do LGR (Lugar Geom?trico das Raizes). Os controladores implementados apresentaram o desempenho esperado, e aquele encontrado utilizando o ?ndice proposto presentou melhor desempenho. / The control of dynamic systems is a challenge, the methods traditionally used in tuning present the difficulty in expressing the desired specifications and being able to find controllers that produce these requirements, especially when the case requires more complex controllers, as in the case of Multiple Input Multiple Output (MIMO) problems. Due to the increasing competitiveness in the industry, it becomes imperative to use more efficient tuning techniques and that in fact can find controllers with the desired performance. For this, one can use metaheuristics, such as Particle Swarm Optimization (PSO), Genetic Algorithm (AG) and Vagalume Algorithm (AV) to obtain the parameters of the controller according to a fitness function, which should in fact code how good a given controller is, adequately expressing the desired specifications, so that the metaheuristic employed can find the optimal controller, which best satisfies the chosen fitness function. Therefore, it is proposed to use the multilevel wavelet analysis, already present in the literature, focused on other applications, especially in the analysis of signals, sounds and images, for the creation of an index to be used as a fitness function in control optimization. Wavelet analysis allows to capture information on the behavior and shape of the signal by informing the frequency of a signal over time, a characteristic that may be desirable, in the evaluation and design of controllers and, thus, it is possible to separately evaluate the transient and steady-state performances. A case study will be done, finding control of a MIMO system of four coupled tanks. A comparative study was made with other fitness functions presented in the literature and with the LGR (Geometric Place of Roots) method. The implemented controllers presented the expected performance, and the one found using the proposed index presented better performance.

Page generated in 0.0469 seconds