Spelling suggestions: "subject:"alkali activation"" "subject:"alikali activation""
21 |
Kompozitní materiály na bázi alkalicky aktivované vysokopecní strusky s přídavkem elektrárenských popílků / Composite materials based on alcali activated blast furnace slag with admixture of fly ashIndra, Ivo January 2010 (has links)
This thesis concerns on substitution of blast furnace slag or its part with fly ash in alkali-activated systems based on aluminosilikates. Classic, fluid bottom and fluid filter fly ashes will be tested. The goal is to prepare geopolymer with required mechanical properties, but with maximal admixture of alternative raw materials. In composites with substitutioned slag or its part the thesis focuses mainly on workabilityof fresh mixture, pressure and bending strenght. Use of secondary raw materials has advantages in the economic point of view and it´s friendly to enviroment, too.
|
22 |
Vliv přísad na vlastnosti metakaolinového geopolymeru / Effect of admixtures on the properties of metakaolin geopolymerHalasová, Kristýna January 2017 (has links)
Geopolymers are amorphous to semi-crystalline aluminosilicate polymers which are formed from inorganic polycondensation reaction of a solid aluminosilicate precursor with an alkaline sodium hydroxide or silicate. The resulting materials exhibit high durability, resistance to aggressive environments, high temperature resistance and many other properties that make them have received much attention in recent years, not only in construction. This thesis describes the influence of additives commonly used in concrete and mortar (water reducing, superplasticizer, air-entraining, foamer and defoamer, anti-shrinkage, stabilization) on the behavior of metakaolin in geopolymer fresh and hardened state. It describes metakaolin geopolymer effect on rheological properties of fresh mixtures, compressive strength and flexural strength after 28 days and a density in the fresh and hardened state.
|
23 |
Kompozitní materiály se silikátovou matricí do prostředí vysokých teplot / Composite materials with silica matrix in the environment of high temperaturesLisztwanová, Ewa January 2017 (has links)
This thesis deals with the study and design of composite materials based on silica matrix suitable for extreme conditions, eg. for the repair of concrete structures with anticipated increased risk of fire. The theoretical part summarizes basic knowledge concerning the fire resistance of structures and the behavior of the composite system during extreme conditions. Theoretically oriented section also contains information on alkali-activated materials and their use in high temperature environments. Based on the evaluation of the theoretical part of the experiment were designed and tested different types of composite materials with increased content of raw materials from alternative sources. Laboratory research has been based on testing of basic physico-mechanical parameters including phase composition and microstructure of the proposed formulations before and after thermal exposure of 1200 ° C. Also considered was the effect of different cooling conditions.
|
24 |
Využití některých velkoobjemově produkovaných druhotných surovin k přípravě pojiv a kompozitů na bázi geopolymerů / Utilization of some massive produced byproducts for preparation of geopolymer based binders and compositesEckl, Ondřej January 2009 (has links)
Preparation of geopolymer composites from industrial wastes of energy power stations and metalurgy.
|
25 |
Geopolymery na bázi elektrárenských popílků a cihelného střepu / Geopolymers based on fly ashes and brick bodyŘezník, Bohuslav January 2014 (has links)
In line with the current focus on utilizing side products of various production processes, this dissertation thesis analyzes the process of alkali activation of particular side products: fly ash and brick fragments. This activation produces geopolymeric materials widely used in civil engineering. The thesis aims to optimize the geopolymerization process so that the resulting geopolymer is both ecologically and economically viable. To that end, the thesis studies the course of geopolymeric reaction between the alkali activator and fly ash from: (i) the Chvaletice power plant, (ii) the Dětmarovice power plant, and (iii) biomass combustion, as well as (iv) fluid fly ash from the Hodonín power plant. All experiments of geopolymeric reaction have focused on the factors influencing the synthesis of geopolymers—that is: composition of the alkali activator, the ratio of alumino-silicate to the activator, and the impact of temperature on structure of the synthesized geopolymer. Further, the thesis analyzed the synthesized polymer’s microstructure, phase composition, resistance against corrosive conditions, and compressive strength, as well as mechanical-fracture properties of selected fly-ash geopolymers. The thesis finds that the most suitable for geopolymeric synthesis appears to be the fly ash from the Chvaletice power plant in which case the obtained geopolymers showed best properties in the studied areas. The fly ash from the Dětmarovice power plant, biomass fly ash, and fluid fly ash have failed to reach acceptable properties. Separately, the thesis studies the geopolymerization of brick body that could be suitable input for alkali activation. The geopolymers synthesized from brick fragments resulted in materials of supperior mechanical strength. A mixed use of fly ash and brick fragments failed to show a synergetic effect. Properties of the resulting geopolymers have been inferior to the properties of geopolymers produced using just fly ash or just brick body.
|
Page generated in 0.1134 seconds