• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of ASP formulations for reactive crude oil in high clay, high temperature reservoirs

Tipley, Kyle Andrew 06 November 2012 (has links)
Surfactant formulations consisting of surfactant, alkali, polymer, and electrolyte have been developed using well defined screening processes established through experimentation in labs around the world. Due to recent advances in chemical enhanced oil recovery, surfactants can be used to extend the life of mature reservoirs with increasingly diverse conditions. High temperatures, complex geochemistry, or high clay content can provide significant challenges when developing formulations for chemical flooding. Through careful selection and screening of surfactants and chemicals, oil recovery of greater than 90% can be achieved in laboratory corefloods despite these difficulties. The objective of this research was to determine the ideal surfactant formulation using a sulfate surfactant for a reservoir with high clay content at 85 ºC. Advances in our laboratory have shown sulfate surfactants to be stable under specific conditions at elevated temperature. In addition, new methods of synthesizing surfactants have yielded a vast array of structures and iterations of novel surfactants to test for EOR applicability. Experiments contained within include surfactant screening both with and without the presence of crude oil and evaluation of polymer and microemulsion viscosity. From these results, a series of corefloods were performed in Berea and reservoir corefloods that yielded oil recovery of 90% and above with low surfactant retention. / text
2

An integrated approach to chemical EOR opportunity valuation : technical, economic, and risk considerations for project development scenarios and final decision

Flaaten, Adam Knut 30 January 2013 (has links)
Surfactant-polymer (SP) and alkali-surfactant-polymer (ASP) flooding has gained little traction among different tertiary recovery strategies such as thermal and miscible gas flooding; however, many mature onshore reservoirs could be potential candidates. More than four decades of research has detailed technical challenges and successes through laboratory experimentation, chemical flood simulation, and some pilot projects, which have provided technical screening procedures to efficiently filter unfeasible projects. Therefore, technical understanding seems sufficient to advance projects through early development stages; however, a project value identification and realization process ultimately dictates project implementation in the oil and gas industry, with technical feasibility merely supporting overall valuation and project feasibility. A quick early screening methodology integrating important project valuation criteria can efficiently assess large numbers of projects. The relatively few studies detailing chemical flooding valuation from just an economic standpoint reflects the need for an integrated process-oriented framework for quick early screening valuation of chemical flooding opportunities. This study develops an integrated process-oriented framework for early screening and valuation, with an overall objective to quickly filter unfeasible projects based on valuation criteria, rather than technical feasibility alone. A reservoir-to-market model was developed, integrating information from laboratory experiments (phase behavior, core flood), field analogues (well performance and layout), facilities, rigs, costs, scheduling, and economics. Recently published ASP flood data of the central Xing2 area in Daqing, China was used for model inputs. A reservoir-to-market benchmark model for a typical mature onshore field was successfully built and tested, and could value projects using standard economic metrics (net present value, internal rate of return, value investment ratio, unit technical cost, and payback period). Model simplification was achieved through global sensitivity analysis. Using a mean-reversion oil price model, the oil price accounted for 98% of the total sensitivity. . Model efficiency was achieved through discretization of input parameter uncertainties, which sped the screening process. Decision-making between model alternatives given information and different states of nature was performed through decision-tree techniques based on overall project valuation. Overall, this study was novel and provided benefit as a robust, integrated process-oriented framework for chemical EOR project screening, valuation, and decision-making. / text
3

Enhanced oil recovery of heavy oils by non-thermal chemical methods

Kumar, Rahul, active 2013 07 October 2013 (has links)
It is estimated that the shallow reservoirs of Ugnu, West Sak and Shraeder Bluff in the North Slope of Alaska hold about 20 billion barrels of heavy oil. The proximity of these reservoirs to the permafrost makes the application of thermal methods for the oil recovery very unattractive. It is feared that the heat from the thermal methods may melt this permafrost leading to subsidence of the unconsolidated sand (Marques 2009; Peyton 1970; Wilson 1972). Thus it is necessary to consider the development of cheap non-thermal methods for the recovery of these heavy oils. This study investigates non-thermal techniques for the recovery of heavy oils. Chemicals such as alkali, surfactant and polymer are used to demonstrate improved recovery over waterflooding for two oils (A:10,000cp and B:330 cp). Chemical screening studies showed that appropriate concentrations of chemicals, such as alkali and surfactant, could generate emulsions with oil A. At low brine salinity oil-in-water (O/W) emulsions were generated whereas water-in-oil (W/O) emulsions were generated at higher salinities. 1D and 2D sand pack floods conducted with alkali surfactant (AS) at different salinities demonstrated an improvement of oil recovery over waterflooding. Low salinity AS flood generated lower pressure drop, but also resulted in lower oil recovery rates. High salinity AS flood generated higher pressure drop, high viscosity emulsions in the system, but resulted in a greater improvement in oil recovery over waterfloods. Polymers can also be used to improve the sweep efficiency over waterflooding. A 100 cp polymer flood improved the oil recovery over waterflood both in 1D and 2D geometry. In 1D geometry 1PV of polymer injection increased the oil recovery from 30% after waterflood to 50% OOIP. The tertiary polymer injection was found to be equally beneficial as the secondary polymer injection. It was also found that the combined application of AS and polymer did not give any major advantage over polymer flood or AS flood alone. Chemical EOR technique was considered for the 330cp oil B. Chemical screening studies showed that microemulsions could be generated in the system when appropriate concentrations of alkali and surfactant were added. Solubilization ratio measurement indicted that the interfacial tension in the system approached ultra-low values of about 10-3 dynes/cm. The selected alkali surfactant system was tested in a sand pack flood. Additionally a partially hydrolyzed polymer was used to provide mobility control to the process. The tertiary injection of ASP (Alkali-Surfactant-Polymer) was able to improve the oil recovery from 60% OOIP after the waterflood to almost 98% OOIP. A simple mathematical model was built around viscous fingering phenomenon to match the experimental oil recoveries and pressure drops during the waterflood. Pseudo oil and water relative permeabilities were calculated from the model, which were then used directly in a reservoir simulator in place of the intrinsic oil-water relative permeabilities. Good agreement with the experimental values was obtained. For history matching the polymer flood of heavy oil, intrinsic oil-water relative permeabilities were found to be adequate. Laboratory data showed that polymer viscosity is dependent on the polymer concentration and the effective brine salinity. Both these effects were taken into account when simulating the polymer flood or the ASP flood. The filtration theory developed by Soo and Radke (1984) was used to simulate the dilute oil-in-water emulsion flow in the porous media when alkali-surfactant flood of the heavy oil was conducted. The generation of emulsion in the porous media is simulated via a reaction between alkali, surfactant, water and heavy oil. The theory developed by Soo and Radke (1984) states that the flowing emulsified oil droplets clog in pore constrictions and on the pore walls, thereby restricting flow. Once captured, there is a negligible particle re-entrainment. The simulator modeled the capture of the emulsion droplets via chemical reaction. Next, the local water relative permeability was reduced as the trapping of the oil droplets will reduce the mobility of the water phase. This entrapment mechanism is responsible for the increase in the pressure drop and improvement in oil recovery. The model is very sensitive to the reaction rate constants and the oil-water relative permeabilities. ASP process for lower viscosity 330 cp oil was modeled using the UTCHEM multiphase-multicomponent simulator developed at the University of Texas at Austin. The simulator can handle the flow of three liquid phases; oil, water and microemulsion. The generation of microemulsion is modeled by the reaction of the crude oil with the chemical species present in the aqueous phase. The experimental phase behavior of alkali and surfactant with the crude oil was modeled using the phase behavior mixing model of the simulator. Oil and water relative permeabilities were enhanced where microemulsion is generated and interfacial tension gets reduced. Experimental oil recovery and pressure drop data were successfully history matched using UTCHEM simulator. / text

Page generated in 0.0651 seconds