Spelling suggestions: "subject:"alkaline pretreatment"" "subject:"alkaline retreatment""
1 |
Effect of Alkaline Pretreatment on Anaerobic Digestion of Organic Fraction of Municipal Solid WasteAlqaralleh, Rania Mona 27 March 2012 (has links)
The rapid accumulation of municipal solid waste is a significant environmental concern in our rapidly growing world. Due to its low cost, high energy recovery and limited environmental impact anaerobic digestion (AD) is a promising solution for stabilizing the organic fraction of municipal solid waste (OFMSW). Hydrolysis is often the rate-limiting step during AD of wastes with high solid content; this step can be accelerated by pretreatment of waste prior to AD.
This thesis presents the results of alkaline pretreatment of OFMSW using NaOH and KOH. Four different pH levels 10, 11, 12 and 13 at two temperatures 23±1°C and 80±1°C were examined to study the effects of the pretreatment on (i) enhancing the solubility of the organic fraction of the waste, and (ii) enhancing the AD process and the biogas production. The effects on solubility were investigated by measuring changes in the soluble COD (SCOD) concentrations of pretreated wastes and the enhanced AD was investigated by measuring volatile solids (VS) destruction, total COD (TCOD) and SCOD removal in addition to biogas and methane production using biochemical methane potential (BMP) assay and semi-continuous laboratory reactor experiments. Pretreatment at pH 13 at 80±1°C demonstrated the maximum solubility for both NaOH and KOH pretreated samples; however the BMP analysis demonstrated that pretreatment at pH 12 at 23±1°C showed the greatest biogas yield relative to the removed VS for both chemicals. Thus pretreatment at pH 12 at 23±1°C using NaOH and KOH were examined using semi-continuous reactors at three different HRTs: 10, 15 and 20 days. Pretreatment demonstrated a significant improvement in the AD performance at SRTs of 10 and 15 days.
|
2 |
Effect of Alkaline Pretreatment on Anaerobic Digestion of Organic Fraction of Municipal Solid WasteAlqaralleh, Rania Mona 27 March 2012 (has links)
The rapid accumulation of municipal solid waste is a significant environmental concern in our rapidly growing world. Due to its low cost, high energy recovery and limited environmental impact anaerobic digestion (AD) is a promising solution for stabilizing the organic fraction of municipal solid waste (OFMSW). Hydrolysis is often the rate-limiting step during AD of wastes with high solid content; this step can be accelerated by pretreatment of waste prior to AD.
This thesis presents the results of alkaline pretreatment of OFMSW using NaOH and KOH. Four different pH levels 10, 11, 12 and 13 at two temperatures 23±1°C and 80±1°C were examined to study the effects of the pretreatment on (i) enhancing the solubility of the organic fraction of the waste, and (ii) enhancing the AD process and the biogas production. The effects on solubility were investigated by measuring changes in the soluble COD (SCOD) concentrations of pretreated wastes and the enhanced AD was investigated by measuring volatile solids (VS) destruction, total COD (TCOD) and SCOD removal in addition to biogas and methane production using biochemical methane potential (BMP) assay and semi-continuous laboratory reactor experiments. Pretreatment at pH 13 at 80±1°C demonstrated the maximum solubility for both NaOH and KOH pretreated samples; however the BMP analysis demonstrated that pretreatment at pH 12 at 23±1°C showed the greatest biogas yield relative to the removed VS for both chemicals. Thus pretreatment at pH 12 at 23±1°C using NaOH and KOH were examined using semi-continuous reactors at three different HRTs: 10, 15 and 20 days. Pretreatment demonstrated a significant improvement in the AD performance at SRTs of 10 and 15 days.
|
3 |
Effect of Alkaline Pretreatment on Anaerobic Digestion of Organic Fraction of Municipal Solid WasteAlqaralleh, Rania Mona 27 March 2012 (has links)
The rapid accumulation of municipal solid waste is a significant environmental concern in our rapidly growing world. Due to its low cost, high energy recovery and limited environmental impact anaerobic digestion (AD) is a promising solution for stabilizing the organic fraction of municipal solid waste (OFMSW). Hydrolysis is often the rate-limiting step during AD of wastes with high solid content; this step can be accelerated by pretreatment of waste prior to AD.
This thesis presents the results of alkaline pretreatment of OFMSW using NaOH and KOH. Four different pH levels 10, 11, 12 and 13 at two temperatures 23±1°C and 80±1°C were examined to study the effects of the pretreatment on (i) enhancing the solubility of the organic fraction of the waste, and (ii) enhancing the AD process and the biogas production. The effects on solubility were investigated by measuring changes in the soluble COD (SCOD) concentrations of pretreated wastes and the enhanced AD was investigated by measuring volatile solids (VS) destruction, total COD (TCOD) and SCOD removal in addition to biogas and methane production using biochemical methane potential (BMP) assay and semi-continuous laboratory reactor experiments. Pretreatment at pH 13 at 80±1°C demonstrated the maximum solubility for both NaOH and KOH pretreated samples; however the BMP analysis demonstrated that pretreatment at pH 12 at 23±1°C showed the greatest biogas yield relative to the removed VS for both chemicals. Thus pretreatment at pH 12 at 23±1°C using NaOH and KOH were examined using semi-continuous reactors at three different HRTs: 10, 15 and 20 days. Pretreatment demonstrated a significant improvement in the AD performance at SRTs of 10 and 15 days.
|
4 |
Effect of Alkaline Pretreatment on Anaerobic Digestion of Organic Fraction of Municipal Solid WasteAlqaralleh, Rania Mona January 2012 (has links)
The rapid accumulation of municipal solid waste is a significant environmental concern in our rapidly growing world. Due to its low cost, high energy recovery and limited environmental impact anaerobic digestion (AD) is a promising solution for stabilizing the organic fraction of municipal solid waste (OFMSW). Hydrolysis is often the rate-limiting step during AD of wastes with high solid content; this step can be accelerated by pretreatment of waste prior to AD.
This thesis presents the results of alkaline pretreatment of OFMSW using NaOH and KOH. Four different pH levels 10, 11, 12 and 13 at two temperatures 23±1°C and 80±1°C were examined to study the effects of the pretreatment on (i) enhancing the solubility of the organic fraction of the waste, and (ii) enhancing the AD process and the biogas production. The effects on solubility were investigated by measuring changes in the soluble COD (SCOD) concentrations of pretreated wastes and the enhanced AD was investigated by measuring volatile solids (VS) destruction, total COD (TCOD) and SCOD removal in addition to biogas and methane production using biochemical methane potential (BMP) assay and semi-continuous laboratory reactor experiments. Pretreatment at pH 13 at 80±1°C demonstrated the maximum solubility for both NaOH and KOH pretreated samples; however the BMP analysis demonstrated that pretreatment at pH 12 at 23±1°C showed the greatest biogas yield relative to the removed VS for both chemicals. Thus pretreatment at pH 12 at 23±1°C using NaOH and KOH were examined using semi-continuous reactors at three different HRTs: 10, 15 and 20 days. Pretreatment demonstrated a significant improvement in the AD performance at SRTs of 10 and 15 days.
|
5 |
Estudo da ampliação de escala do processo de pré-tratamento alcalino do bagaço de cana-de-açúcar para obtenção de etanol de segunda geração / Scale up study of sugarcane bagasse alkaline pretreatment process for second generation ethanol productionNakanishi, Simone Coelho 05 October 2016 (has links)
No presente trabalho, dados de ampliacao de escala, de um processo de pre-tratamento alcalino em escala laboratorial (2L) para escala piloto (350L) foram avaliados. Os experimentos realizados previamente em escala laboratorial apontaram duas condições potenciais para a ampliacao de escala, a saber: Ensaio 5 (130°C, 30 min, 1,5% m/v NaOH, 0,15% m/m antraquinona) apresentando a maior conversao enzimatica da polpa obtida (64,5%) e Ensaio 7 (170°C, 1,5 % m/v NaOH, 30 min, 0,15% m/m antraquinona) com a maior solubilizacao de lignina (81,0 %). Os experimentos em escala piloto foram realizados nas condicoes apontadas, com e sem a adicao de antraquinona. A reprodutibilidade dos dados em escala piloto foi satisfatoria, considerando o sistema de aquecimento e agitacao mais eficientes do reator piloto em relacao ao reator usado no laboratorio. O uso da antraquinona diminuiu a solubilizacao de carboidratos durante o pretratamento (evitando 67% de solubilizacao quando comparado a reacao sem antraquinona, a 130°C), mas interferiu negativamente na etapa subsequente de hidrolise, principalmente na reacao a 170°C. Dentre as condicoes testadas, o ensaio 5Pil/AQ (130°C, 30 min, 1,5% NaOH e 0,15% m/m antraquinona) foi eleito como a melhor condicao de pre-tratamento, com maior rendimento em carboidratos apos a hidrolise enzimatica, sendo possivel obter (extrapolando os resultados) 290 kg de glicose e 98 kg de xilose a partir de uma tonelada de bagaco (base seca). Para a obtencao de etanol a partir desse hidrolisado, foram realizadas fermentacoes com tres diferentes leveduras - S. cerevisiae CAT-1, S. stipitis NRRL Y-7124 e S. passalidarum NRRL Y-27907. O melhor resultado foi apresentado para fermentacao em batelada alimentada aplicando reciclo de celulas utilizando a levedura S. passalidarum, produzindo 23,3 g/L de etanol (97 % do teorico) com produtividade de 0,90 g/L.h em 24 h de fermentacao no terceiro reciclo. O processo de pre-tratamento alcalino gera, alem da polpa rica em carboidratos, um hidrolisado rico em lignina. A lignina foi precipitada desse hidrolisado apos cada pre-tratamento realizado e caracterizada, apresentando poder calorifico entre 22,8 e 25,3 MJ/kg. / In this study, data scale up for an alkaline pretreatment process from lab to pilot scale was evaluated. Lab scale experiments indicated two potential conditions for the scale-up, namely: 130°C, 30 min, 1.5% w/v NaOH, 0.15% w/w anthraquinone , presenting the highest enzymatic conversion (64.5%); and 170°C, 30 min, 1.5% w/v NaOH, 0.15% w/w anthraquinone with the highest lignin solubilization (81.0 %). The experiments were performed on pilot scale under the aforementioned conditions, with and without anthraquinone. Data reproducibility on pilot scale was satisfactory considering the more efficient heating and stirring reactor system when compared to the reactor in lab scale. Anthraquinone decreases the solubilization of carbohydrates during pretreatment (avoiding 67% solubilization compared to the reaction without anthraquinone, at 130°C), but interferes negatively in the subsequent hydrolysis step, mostely at 170°C. Among the conditions tested, the test performed at 130°C, 30 min, 1.5% w/v NaOH and with 0.15% w/w anthraquinone was chosen as the best pretreatment condition, with the highest carbohydrate conversion after enzymatic hydrolysis, allowing 290 kg of glucose and 98 kg of xylose per a dry base ton of bagasse. In order to produce ethanol from this hydrolyzate, fermentations with three different yeasts were performed - S. cerevisiae CAT-1, S. stipites NRRL Y-7124, S. passalidarum NRRL Y-27907. Fed-batch fermentation with S. passalidarum cell recycling provided the best result, yielding 23.3 g/L ethanol, 97 % (theoretical yield) with 0.90 g/L.h productivity within 24 h of fermentation. The alkaline pretreatment process generates, besides the pulp rich in carbohydrates, a lignin-rich hydrolyzate. Lignin was precipitated from the hydrolyzate obtained after each pretreatment carried out and characterized, presenting heating values between 22.8 and 25.3 MJ/kg.
|
6 |
Estudo da ampliação de escala do processo de pré-tratamento alcalino do bagaço de cana-de-açúcar para obtenção de etanol de segunda geração / Scale up study of sugarcane bagasse alkaline pretreatment process for second generation ethanol productionSimone Coelho Nakanishi 05 October 2016 (has links)
No presente trabalho, dados de ampliacao de escala, de um processo de pre-tratamento alcalino em escala laboratorial (2L) para escala piloto (350L) foram avaliados. Os experimentos realizados previamente em escala laboratorial apontaram duas condições potenciais para a ampliacao de escala, a saber: Ensaio 5 (130°C, 30 min, 1,5% m/v NaOH, 0,15% m/m antraquinona) apresentando a maior conversao enzimatica da polpa obtida (64,5%) e Ensaio 7 (170°C, 1,5 % m/v NaOH, 30 min, 0,15% m/m antraquinona) com a maior solubilizacao de lignina (81,0 %). Os experimentos em escala piloto foram realizados nas condicoes apontadas, com e sem a adicao de antraquinona. A reprodutibilidade dos dados em escala piloto foi satisfatoria, considerando o sistema de aquecimento e agitacao mais eficientes do reator piloto em relacao ao reator usado no laboratorio. O uso da antraquinona diminuiu a solubilizacao de carboidratos durante o pretratamento (evitando 67% de solubilizacao quando comparado a reacao sem antraquinona, a 130°C), mas interferiu negativamente na etapa subsequente de hidrolise, principalmente na reacao a 170°C. Dentre as condicoes testadas, o ensaio 5Pil/AQ (130°C, 30 min, 1,5% NaOH e 0,15% m/m antraquinona) foi eleito como a melhor condicao de pre-tratamento, com maior rendimento em carboidratos apos a hidrolise enzimatica, sendo possivel obter (extrapolando os resultados) 290 kg de glicose e 98 kg de xilose a partir de uma tonelada de bagaco (base seca). Para a obtencao de etanol a partir desse hidrolisado, foram realizadas fermentacoes com tres diferentes leveduras - S. cerevisiae CAT-1, S. stipitis NRRL Y-7124 e S. passalidarum NRRL Y-27907. O melhor resultado foi apresentado para fermentacao em batelada alimentada aplicando reciclo de celulas utilizando a levedura S. passalidarum, produzindo 23,3 g/L de etanol (97 % do teorico) com produtividade de 0,90 g/L.h em 24 h de fermentacao no terceiro reciclo. O processo de pre-tratamento alcalino gera, alem da polpa rica em carboidratos, um hidrolisado rico em lignina. A lignina foi precipitada desse hidrolisado apos cada pre-tratamento realizado e caracterizada, apresentando poder calorifico entre 22,8 e 25,3 MJ/kg. / In this study, data scale up for an alkaline pretreatment process from lab to pilot scale was evaluated. Lab scale experiments indicated two potential conditions for the scale-up, namely: 130°C, 30 min, 1.5% w/v NaOH, 0.15% w/w anthraquinone , presenting the highest enzymatic conversion (64.5%); and 170°C, 30 min, 1.5% w/v NaOH, 0.15% w/w anthraquinone with the highest lignin solubilization (81.0 %). The experiments were performed on pilot scale under the aforementioned conditions, with and without anthraquinone. Data reproducibility on pilot scale was satisfactory considering the more efficient heating and stirring reactor system when compared to the reactor in lab scale. Anthraquinone decreases the solubilization of carbohydrates during pretreatment (avoiding 67% solubilization compared to the reaction without anthraquinone, at 130°C), but interferes negatively in the subsequent hydrolysis step, mostely at 170°C. Among the conditions tested, the test performed at 130°C, 30 min, 1.5% w/v NaOH and with 0.15% w/w anthraquinone was chosen as the best pretreatment condition, with the highest carbohydrate conversion after enzymatic hydrolysis, allowing 290 kg of glucose and 98 kg of xylose per a dry base ton of bagasse. In order to produce ethanol from this hydrolyzate, fermentations with three different yeasts were performed - S. cerevisiae CAT-1, S. stipites NRRL Y-7124, S. passalidarum NRRL Y-27907. Fed-batch fermentation with S. passalidarum cell recycling provided the best result, yielding 23.3 g/L ethanol, 97 % (theoretical yield) with 0.90 g/L.h productivity within 24 h of fermentation. The alkaline pretreatment process generates, besides the pulp rich in carbohydrates, a lignin-rich hydrolyzate. Lignin was precipitated from the hydrolyzate obtained after each pretreatment carried out and characterized, presenting heating values between 22.8 and 25.3 MJ/kg.
|
7 |
Combination Of Alkaline Solubilization With Microwave Digestion As A Sludge Disintegration Method: Effect On Gas Production And Quantity And Dewaterability Of Anaerobically Digested SludgeDogan, Ilgin 01 July 2008 (has links) (PDF)
The significant increase in the sewage sludge production in treatment plants makes anaerobic digestion more important as a stabilization process. However hydrolysis is the rate-limiting step of anaerobic digestion because of the semirigid structure of the microbial cells. Pretreatment of waste activated sludge
(WAS) leads to disruption of cell walls and release of extracellular and intracellular materials. Therefore biodegradability of sludge will be improved in terms of more biogas production and sludge minimization. Among the pretreatment methods, alkaline, thermal and thermochemical pretreatments are effectual ones. Considering the effect of thermal pretreatment, microwave technology in which the sample reaches to elevated temperatures very rapidly is a very new pretreatment method. However no previous research has been conducted to test the effectiveness of microwave (MW) irradiation combined with alkaline pretreatment. Since both of these techniques seem to be highly effective, their combination can act synergistically and even more efficient method can be obtained. Therefore the main objective of this study was to investigate the effect of combination of a chemical method (alkaline pretreatment) and a physical method (microwave irradiation) in improving anaerobic digestion of WAS.
In the first part of the study, alkaline and MW pretreatment methods were examined separately, then their combinations were investigated for the first time in the literature in terms of COD solubilization, turbidity and CST. Highest SCOD was achieved with the combined method of MW+pH-12. In the second part, based on the results obtained in the first part, alkaline pretreatments of pH-10 and pH-12 / MW pretreatment alone and combined pretreatments of MW+pH-10 and MW+pH-12 pretreated WAS samples were anaerobically digested in small scale batch anaerobic reactors. In correlation with the highest protein and carbohydrate releases with MW+pH-12, highest total gas and methane productions were achieved with MW+pH-12 pretreatment reactor with 16.3% and 18.9% improvements over control reactor, respectively. Finally the performance of MW+pH-12 pretreatment was examined with 2L anaerobic semi-continuous reactors. 43.5% and 53.2% improvements were obtained in daily total gas and methane productions. TS, VS and TCOD reductions were improved by 24.9%, 35.4% and 30.3%, respectively. Pretreated digested sludge had 22% improved dewaterability than non-pretreated digested sludge. Higher SCOD and NH3-N concentrations were measured in the effluent of pretreated digested sludge / however, PO4-P concentration did not vary so much. Heavy metal concentrations of all digested sludges met Soil Pollution Control Regulation Standards. Finally a simple cost calculation was done for a MW+pH-12 pretreatment of WAS for a fictitious WWTP. Results showed that, WWTP can move into profit in 5.5 years.
|
8 |
EVALUATION OF DIFFERENT SOURCES OF HYDROXYL ON BIOMASS PRETREATMENT AND HYDROLYSISSoares Rodrigues, Carla Ines 01 January 2015 (has links)
Lignocellulosic biomass pretreatment is a fundamental step in the production of renewable fuels and chemicals. It is responsible for the disruption and removal of lignin and hemicellulose from the lignocellulosic matrix, improving the enzymatic hydrolysis of cellulose. Alkaline pretreatment has been shown to be successful on agricultural residues and dedicated energy crops. The objective of this study was to evaluate the pretreatment of switchgrass, wheat straw, corn stover, and miscanthus using calcium hydroxide, potassium hydroxide, and sodium hydroxide at the same hydroxyl concentration, 60% moisture content, and two temperatures for seven days. Enzymatic hydrolysis was also performed and the glucose produced measured. The composition of cellulose, hemicellulose, and lignin before and after pretreatment were quantified according to the standard procedures developed by the NREL for biomass. The hydrolysis was performed at 50°C and 150 rpm. The enzyme loading was 60 FPU/g cellulose. Overall, calcium hydroxide pretreatment resulted in the lowest delignification and structural carbohydrates after pretreatment, as well as lowest glucose yield; In addition to having a higher cost and carbon dioxide emission then sodium and potassium hydroxides. Sodium hydroxide and potassium hydroxide had similar performance in terms of composition changes due to pretreatment and glucose yield after enzymatic hydrolysis.
|
9 |
Caracterização ultraestrutural e hidrólise enzimática de cana-de-açúcar e bagaço pré-tratado quimio-mecanicamente / Ultrasctructural characterization and enzymatic hydrolysis of chemomechanical pretreated sugarcane and sugarcane bagasse.Fernanda Machado Mendes Carvalho 21 August 2014 (has links)
O presente trabalho tem como objetivo estudar as modificações ocorridas na cana-de-açúcar, com diferentes composições químicas e estruturais, pelo pré-tratamento sulfito alcalino. A remoção de lignina e hemicelulose, bem como a introdução de grupos sulfônicos em cana-de-açúcar que ocorrem durante o pré-tratamento sulfito alcalino tornam mais fácil a hidrólise da celulose. A compreensão das modificações químicas e físicas em materiais lignocelulósicos que ocorrem durante este pré-tratamento é fundamental para a geração de processos mais eficazes. Neste trabalho, bagaço e entrenós de cana-de-açúcar, selecionados de plantas híbridas com composição química variada, foram pré-tratados em condições brandas com 10% de sulfito e 5% de hidróxido de sódio por diferentes tempos. No início do pré-tratamento, a deslignificação aumentou rapidamente, o mesmo não aconteceu com a hemicelulose. Nos primeiros 30 min de pré-tratamento do bagaço de cana-de-açúcar houve remoção de 50% da lignina inicial e 30% da hemicelulose, o que ocasionou uma melhora significativa na conversão de celulose, atingindo 64%. Mesmo sem remoção adicional de lignina e hemicelulose, o processo continuou a introduzir os grupos ácidos, o que contribuiu para o inchamento da fibra. A largura da fibra do bagaço não tratado aumentou de 10,4 ?m para 30 ?m no material pré-tratado com 120 min. Estas modificações na fibra foram responsáveis pelo aumento na eficiência da hidrólise enzimática da celulose, a qual atingiu 92%. Híbridos experimentais com teores reduzidos de lignina apresentaram taxas iniciais de hidrólise mais elevadas e um menor tempo de pré-tratamento para alcançar a conversão total de celulose do que a cana de referência. Diferentes regiões (medula, interface, córtex e fração externa) dos entrenós das canas foram hidrolisadas por celulases. O pré-tratamento da interface, córtex e fração externa com sulfito-alcalino produziu substratos menos recalcitrantes com o aumento do tempo de reação e resultou na melhora da hidrólise enzimática. Foram utilizadas várias técnicas para avaliar as mudanças que ocorreram durante o pré-tratamento, as quais foram capazes de estudar a morfologia da superfície e as características químicas das amostras. O tratamento químico ocasionou uma intensa deslignificação e alterações morfológicas nas superfícies das fibras da cana-de-açúcar. A redução na absorção a 285 nm e 315 nm das paredes celulares das fibras, parênquima e dos vasos aumentou substancialmente os valores de conversão enzimática da celulose e da hemicelulose. Microscopia eletrônica de varredura por emissão de campo (FE-SEM) revelou que as fibras da região do córtex e, especialmente, da interface mostrou paredes celulares colapsadas após a parcial deslignificação. Após o tratamento sulfito alcalino, os dados de espectroscopia fotoelétrica de raio-X (XPS) e espectrometria de massa de íons secundários por tempo de vôo (TOF-SIMS) apresentaram um aumento das intensidades dos sinais nas superfícies das fibras, os quais foram atribuídos à presença de carboidratos em algumas amostras. Em conformidade, os sinais de lignina diminuíram nas superfícies das fibras das mesmas amostras. / The present work aims to study the changes occurring in sugar cane, with different in structure and chemical compositions, by sulfite-alkaline pre-treatment. Removing lignin and hemicellulose as well as introducing sulfonic groups in sugar cane pretreated with alkaline sulfite made cellulose hydrolysis easier. Understanding the chemical and physical alterations occurring during this pretreatment of lignocellulosic materials is fundamental for the generation of effective pretreatment methods. In the present work, sugarcane bagasse and also sugar cane internodes, selected from experimental hybrid plants, were pretreated with the alkaline-sulfite process under mild conditions with varied cooking times. The first 30 min of pretreatment of sugar cane bagasse, which removed approximately half of the initial lignin and 30% of hemicellulose seemed responsible for a significant enhancement of the cellulose conversion level, which reached 64%. After the first 30 min of pretreatment, delignification increased slightly and hemicellulose removal was not enhanced. However, the process continued to introduce acid groups into the residual lignin that enhanced the fiber swelling up to 120 min of cooking. The fiber widths increased from 10,4 ?m in the untreated bagasse to 30 ?m in the 120 min-pretreated material. These changes were responsible for an additional increase in the efficiency of enzymatic hydrolysis of the cellulose, which reached 92%. Experimental hybrids with less original lignin presented higher initial hydrolysis rates than reference sugar cane and required lower time of pretreatment to achieve the total cellulose conversion. Different regions (pith, interface, rind and outermost fraction) of the internodes of types of sugarcanes were hydrolyzed by cellulases. The pretreatment of the interface, rind and outermost fraction with alkaline sulfite produced less recalcitrant substrates with increasing reaction time and resulted in improvement enzymatic hydrolysis. Several techniques enabling the study of surface morphological and chemical characteristics were used to evaluate the changes occurring during the pretreatment step. The chemical treatment caused intense delignification and morphological changes on the sugar cane fiber surfaces. The reduction in the absorption at 285 nm and 315 nm of the cell walls of the fibers, parenchyma and vessel, substantially increased the values of enzymatic conversion of cellulose and hemicellulose. Field emission scanning electron microscopy (FE-SEM) indicated that the fibers from rind regions and especially from the interface showed collapsed cell walls after partial delignification. After the alkaline sulfite treatment, X-ray photoelectrom spectroscopy (XPS) and time-of-flight-secondary ion mass spectrometry (ToF-SIMS) data showed increased signal intensities on the fibers surfaces assigned to carbohydrates of some samples. In accordance, the lignin signals diminished on the fiber surfaces of the same samples.
|
10 |
Caracterização ultraestrutural e hidrólise enzimática de cana-de-açúcar e bagaço pré-tratado quimio-mecanicamente / Ultrasctructural characterization and enzymatic hydrolysis of chemomechanical pretreated sugarcane and sugarcane bagasse.Carvalho, Fernanda Machado Mendes 21 August 2014 (has links)
O presente trabalho tem como objetivo estudar as modificações ocorridas na cana-de-açúcar, com diferentes composições químicas e estruturais, pelo pré-tratamento sulfito alcalino. A remoção de lignina e hemicelulose, bem como a introdução de grupos sulfônicos em cana-de-açúcar que ocorrem durante o pré-tratamento sulfito alcalino tornam mais fácil a hidrólise da celulose. A compreensão das modificações químicas e físicas em materiais lignocelulósicos que ocorrem durante este pré-tratamento é fundamental para a geração de processos mais eficazes. Neste trabalho, bagaço e entrenós de cana-de-açúcar, selecionados de plantas híbridas com composição química variada, foram pré-tratados em condições brandas com 10% de sulfito e 5% de hidróxido de sódio por diferentes tempos. No início do pré-tratamento, a deslignificação aumentou rapidamente, o mesmo não aconteceu com a hemicelulose. Nos primeiros 30 min de pré-tratamento do bagaço de cana-de-açúcar houve remoção de 50% da lignina inicial e 30% da hemicelulose, o que ocasionou uma melhora significativa na conversão de celulose, atingindo 64%. Mesmo sem remoção adicional de lignina e hemicelulose, o processo continuou a introduzir os grupos ácidos, o que contribuiu para o inchamento da fibra. A largura da fibra do bagaço não tratado aumentou de 10,4 ?m para 30 ?m no material pré-tratado com 120 min. Estas modificações na fibra foram responsáveis pelo aumento na eficiência da hidrólise enzimática da celulose, a qual atingiu 92%. Híbridos experimentais com teores reduzidos de lignina apresentaram taxas iniciais de hidrólise mais elevadas e um menor tempo de pré-tratamento para alcançar a conversão total de celulose do que a cana de referência. Diferentes regiões (medula, interface, córtex e fração externa) dos entrenós das canas foram hidrolisadas por celulases. O pré-tratamento da interface, córtex e fração externa com sulfito-alcalino produziu substratos menos recalcitrantes com o aumento do tempo de reação e resultou na melhora da hidrólise enzimática. Foram utilizadas várias técnicas para avaliar as mudanças que ocorreram durante o pré-tratamento, as quais foram capazes de estudar a morfologia da superfície e as características químicas das amostras. O tratamento químico ocasionou uma intensa deslignificação e alterações morfológicas nas superfícies das fibras da cana-de-açúcar. A redução na absorção a 285 nm e 315 nm das paredes celulares das fibras, parênquima e dos vasos aumentou substancialmente os valores de conversão enzimática da celulose e da hemicelulose. Microscopia eletrônica de varredura por emissão de campo (FE-SEM) revelou que as fibras da região do córtex e, especialmente, da interface mostrou paredes celulares colapsadas após a parcial deslignificação. Após o tratamento sulfito alcalino, os dados de espectroscopia fotoelétrica de raio-X (XPS) e espectrometria de massa de íons secundários por tempo de vôo (TOF-SIMS) apresentaram um aumento das intensidades dos sinais nas superfícies das fibras, os quais foram atribuídos à presença de carboidratos em algumas amostras. Em conformidade, os sinais de lignina diminuíram nas superfícies das fibras das mesmas amostras. / The present work aims to study the changes occurring in sugar cane, with different in structure and chemical compositions, by sulfite-alkaline pre-treatment. Removing lignin and hemicellulose as well as introducing sulfonic groups in sugar cane pretreated with alkaline sulfite made cellulose hydrolysis easier. Understanding the chemical and physical alterations occurring during this pretreatment of lignocellulosic materials is fundamental for the generation of effective pretreatment methods. In the present work, sugarcane bagasse and also sugar cane internodes, selected from experimental hybrid plants, were pretreated with the alkaline-sulfite process under mild conditions with varied cooking times. The first 30 min of pretreatment of sugar cane bagasse, which removed approximately half of the initial lignin and 30% of hemicellulose seemed responsible for a significant enhancement of the cellulose conversion level, which reached 64%. After the first 30 min of pretreatment, delignification increased slightly and hemicellulose removal was not enhanced. However, the process continued to introduce acid groups into the residual lignin that enhanced the fiber swelling up to 120 min of cooking. The fiber widths increased from 10,4 ?m in the untreated bagasse to 30 ?m in the 120 min-pretreated material. These changes were responsible for an additional increase in the efficiency of enzymatic hydrolysis of the cellulose, which reached 92%. Experimental hybrids with less original lignin presented higher initial hydrolysis rates than reference sugar cane and required lower time of pretreatment to achieve the total cellulose conversion. Different regions (pith, interface, rind and outermost fraction) of the internodes of types of sugarcanes were hydrolyzed by cellulases. The pretreatment of the interface, rind and outermost fraction with alkaline sulfite produced less recalcitrant substrates with increasing reaction time and resulted in improvement enzymatic hydrolysis. Several techniques enabling the study of surface morphological and chemical characteristics were used to evaluate the changes occurring during the pretreatment step. The chemical treatment caused intense delignification and morphological changes on the sugar cane fiber surfaces. The reduction in the absorption at 285 nm and 315 nm of the cell walls of the fibers, parenchyma and vessel, substantially increased the values of enzymatic conversion of cellulose and hemicellulose. Field emission scanning electron microscopy (FE-SEM) indicated that the fibers from rind regions and especially from the interface showed collapsed cell walls after partial delignification. After the alkaline sulfite treatment, X-ray photoelectrom spectroscopy (XPS) and time-of-flight-secondary ion mass spectrometry (ToF-SIMS) data showed increased signal intensities on the fibers surfaces assigned to carbohydrates of some samples. In accordance, the lignin signals diminished on the fiber surfaces of the same samples.
|
Page generated in 0.0948 seconds