• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 169
  • 23
  • 8
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 282
  • 80
  • 67
  • 33
  • 32
  • 31
  • 29
  • 28
  • 22
  • 22
  • 20
  • 19
  • 19
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Infra-red spectra of olefines and organic sulphur compounds, with some applications to the structure and vulcanisation of rubber.

Sheppard, Norman. January 1947 (has links)
Thesis--St. Catharine's College, Cambridge. / Typescript (carbon) with ms. corrections. Without thesis statement. Appendices 1-3 by N. Sheppard and G.B.B.M. Sutherland. Bibliography: leaves 209-216.
192

Asymmetric epoxidation of olefins and cyclization reactions catalyzed by amines /

Ho, Chun-yu. January 2005 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2005.
193

Gold (I) and platinum (II)-catalyzed hydroamination of alkenes and alkynes and related tandem reactions for synthesis of nitrogen-containing multi-cyclic ring compounds and chiral amines

Liu, Xinyuan, January 2010 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2010. / Includes bibliographical references. Also available in print.
194

Quantum chemical studies of olefin epoxidation and benzyne biradicals /

Lundin, Angelica, January 2007 (has links)
Thesis (doctoral)--Göteborg University, 2007. / Includes bibliographical references.
195

Developments in late metal-mediated C-N bond forming reactions /

Pawlikowski, Andrew V. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 186-194).
196

Light Olefin Production by Cracking <i>Nannochloris oculata</i> Microalgae using Aluminosilicate Catalysts

Goyal, Gaurav 23 March 2017 (has links)
The global demand and sustainability concerns for producing light olefins encouraged researchers to look for an alternative and sustainable feedstock. Alkenes, such as ethene, propene and butene, are known as light olefins. Olefins are the backbone of the chemical industry because they serve as the chemical building blocks for the manufacture of polymers, fibers, and numerous organic chemicals. Feedstocks such as naphtha, natural gas and liquefied petroleum gas (LPG) are currently used for producing light olefins, but they are non-renewable and hence unsustainable. In contrast, biomass as a potential feedstock for the production of fuels and chemicals is renewable. Microalgae, in particular, are a promising resource due to their fast growth rate and ability to act as a CO2 sink. The objective of my research was to assess the potential of thermochemical production of the light olefins ethene, propene, and butene from the marine microalga Nannochloris oculata in the absence and presence of catalysts and study the effect of catalyst to cell mass ratio on the production of these chemicals. Thermal cracking was conducted using two catalysts, aluminosilicate (Si/Al) and H-ß zeolite at 400-650 °C in a semi-batch reactor system and gas analysis was performed using mass spectrometry. Cracking of N. oculata by the aluminosilicate catalyst was studied in more detail at catalyst-to-algae mass ratios of zero, 5:1, 10:1 and 20:1 using (Si/Al) catalyst and a comparative study was performed at catalyst-to-algae mass ratio of 10:1 using (Si/Al) and H-ß zeolite catalyst. The formation of light olefins ethene, propene, and butene was quantified. Higher temperature and catalyst to algae ratio led to an increase in the yield of all olefins, although a diminishing effect was observed above 600 °C and a ratio of 5:1. Although ethene was the most significant product, the concentration of all olefins increased significantly, when catalysts were employed in the cracking reaction. Moreover, the comparative study revealed that ethene was the most significant product when (Si/Al) was used and propene was the most significant product when H-ß zeolite was used.
197

Imidazolyl- and pyrazolyl-salicylaldimine transition metal complexes and their applications in olefin transformation reactions

Yankey, Margaret 16 May 2011 (has links)
M.Sc. / This study deals with the synthesis of nitrogen-donor imidazolyl- and pyrazolyl-salicylaldimine compounds, their reactions with selected transition metals and applications as catalysts for Heck coupling reactions of aryl halides with butyl acrylate, ethylene polymerization reactions and reactions of higher α-olefins. Imidazole-based salicylaldimine compounds 2,4-di-tert-butyl-6-{[2-(1H-imidazol-4-yl)-ethylimino]-methyl}-phenol (L1) and 4-tert-butyl-2-{[2-(1H-imidazole-4-yl)-ethylimino]-methly}-phenol (L2) were prepared by Schiff base condensation reaction of histamine dihydrochloride with 3,5-di-tert-butyl-2-hydroxybenzaldehyde and 5-tert-butyl-2-hydroxybenzaldehyde respectively. The compounds were characterized by 1H, 13C{1H} NMR and IR spectroscopy; and high resolution mass spectrometry (HRMS). Compounds 2-{[2-(1H-imidazole-4-yl)-ethylimino]-methly}-phenol (L3), 2,4-di-tert-butyl-6-{[2-(3,5-dimethyl-pyrazol-1-yl)-ethylimino]-methyl}-phenol (L4), 2,4-di-tert-butyl-6-[(2-pyrazol-1-yl-ethylimino)-methyl]-phenol (L5) and 2,4-di-tert-butyl-6-{[2-(3,5-diphenyl-pyrazol-1-yl)-ethylimino]-methyl}-phenol (L6) were synthesized according to literature procedure. Reactions of L1-L3 with [PdCl2(MeCN)2] yielded complexes 2.1-2.3 respectively. Ligand L1 was also complexed with [FeCl2] and [CoCl2] to give complexes 2.4 and 2.5 respectively, while complexes 2.6-2.15 were synthesized by reactions of L1, L2 and L4-L6 with [VCl3] and [CrCl3(THF)3]; all in a ratio of 1:1. The palladium(II) complexes (2.1-2.3) were characterized by 1H, 13C{1H} NMR and IR spectroscopy, mass spectrometry and elemental analysis, while complexes 2.4-2.15 were characterized by IR spectroscopy, mass spectrometry and elemental analysis due to their paramagnetic nature. The structures of complexes 2.1 and 2.4 were confirmed by single crystal X-ray diffraction analysis. All the complexes formed were mononuclear.
198

Dipole Moments of Olefinic Esters

Poteet, Horace M. January 1952 (has links)
It is the purpose of this thesis to investigate the applicability of the Debye equation to measurements dipole moments of polar compounds in dilute solutions of non-polar solvents more fully than has been done by previous workers at this institution.
199

Rh(III)-Catalyzed Alkene Difunctionalization for the Synthesis of Nitrogen-Containing Compounds

Lee, Sumin January 2021 (has links)
Nitrogen-containing compounds are essential structural units in a myriad of biologically active molecules including pharmaceuticals. Although numerous synthetic methods have been developed over the last few decades, new methods constructing them in an efficient way from readily accessible starting material are still great of interest. As a coupling partner of the reaction, alkenes are abundant, general, and therefore ideal starting materials to synthesize a variety of complex, value-added products. In this thesis, we have utilized Rh(III) catalysis to develop efficient synthetic methodologies for nitrogen-containing compounds using alkenes as coupling partners. In Chapter 2, we developed a unique disconnection approach to pyrrolidines using a-olefins as a 4-carbon source and hydroxylamine derivatives as a nitrogen source of the reaction. In Chapter 3, regio- and diastereoselective synthesis of a,b-unsaturated-d-lactams from acrylamide and unactivated alkenes initiated from C-H activation are discussed. In Chapters 4 and 5, three-component alkene difunctionalization of alkenes delivering acyclic aminated products including a-amino acids are described.
200

First Row Transition Metal Hydrides Catalyzed Hydrogen Atom Transfer

Yao, Chengbo January 2022 (has links)
The traditional reagent for H• transfer in organic chemistry is 𝓃-Bu₃SnH, which has a Sn–H bond dissociation energy (BDE) of 78.5 kcal/mol. There are, however, many disadvantages of employing 𝓃-Bu₃SnH in radical reactions. The transfer of H• from tin is necessarily stoichiometric, with 𝓃-Bu₃Sn–X being the eventual product. Overall, the tin reactions have poor atom economy; n-Bu3SnH cannot be regenerated from 𝓃-Bu₃Sn• or 𝓃-Bu₃Sn–X with hydrogen, and no general methods of regenerating the tin hydride with other hydride sources have been reported. Standard purification methods leave unacceptable levels of residual tin in the products of n-Bu3SnH reactions. Alternatives are clearly needed. Transition metal hydrides represent a class of promising reagents to replace 𝓃-Bu₃H. Due to their typically weaker M-H bonds, transition metal hydrides are often able to transfer H• to C=C and generate radicals — a reaction that 𝓃-Bu₃SnH cannot do. Furthermore, many transition-metal hydrides can be regenerated from hydrogen gas, an event that requires that the M–H BDE be over 56 kcal/mol. By combining this reaction with the H• transfer, metalloradicals can often catalyze the formation of radicals from H₂. Over the years, the Norton group has studied several transition metal hydride systems and demonstrated their applications in different scenarios. The kinetics and thermodynamics of these systems have been studies in detail, and they are shown be competent hydrogen atom donors to unsaturated organic substrates and to organic radicals. Some of these metal hydrides can be made catalytic under hydrogen pressure, thus providing an atom-economical way to effect radical reactions. Specifically, the thermodynamic properties of the chromium hydride HCpCr(CO)₃ have been carefully studied. Based on this information, I developed a Ti/Cr cooperative catalytic system featuring multiple interactions between the two metal systems. Herein are described three applications of this Ti/Cr catalytic system: anti-Markovnikov hydrogenation of epoxides (Chapter 2), reductive cyclization of epoxy enones under H₂ (Chapter 3), and aziridine isomerization to allyl amines (Chapter 4). I have also explored new hydrogen atom acceptors. I was able to catalyze hydrodefluorination of CF₃-substituted olefins with a nickel hydride (Chapter 5). The reaction was demonstrated to be initiated by a hydrogen atom transfer from the Ni(II)-H to the olefin substrates. This also expands our toolbox of metal hydrides for transferring hydrogen atom to olefin substrates. With a different cobaloxime catalyst, I was able to catalyze the cycloisomerization of CF₃-substituted dienes (Chapter 6). In Chapter 7, I developed a method to achieve a broad range of hydrofunctionalizations of olefins with hydrogen atom transfer from metal hydrides in situ. Hydrogen atom transfer to olefins was followed by TEMPO trapping to form TEMPO adducts. A subsequent photocatalytic substitution on those TEMPO adducts with different nucleophiles affords various hydrofunctionalized products.

Page generated in 0.1482 seconds