• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 19
  • 17
  • 12
  • 7
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 218
  • 54
  • 30
  • 21
  • 21
  • 19
  • 18
  • 17
  • 17
  • 17
  • 14
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Ionic liquid electrochemical processing of reactive metals

Vaughan, James 05 1900 (has links)
Ionic liquids (ILs) were studied as solvents for electrochemical reactions with the intent to devise metallurgical processes for Al, Mg and Ti that are less energy intensive and operate at lower temperatures than current industrial practice. Tetra-alkyl phosphonium ILs are on the low end of the IL cost spectrum and are regarded as understudied compared with imidazolium and pyridinium ILs. They are also known to be more thermally stable. The density, viscosity and conductivity of the phosphonium ILs and metal salt-IL mixtures were measured. The conductivity of the phosphonium ILs tested were found to be roughly an order of magnitude lower than imidazolium ILs; this is attributed to the relatively large cation size and localized charge. Linear density-temperature functions are presented. The viscosity and conductivity temperature relationship was modeled using the Vogel-Tamman-Fulcher (VTF) equation. The electrochemical window of A10341'14,6,6,610 was studied on a Pt substrate over a wide range of A1C13 concentrations using cyclic voltammetry (CV). It was found that the tetra-alkyl phosphonium cation is on the order of 800 mV more electrochemically stable than the 1-ethyl-3-methyl imidazolium (EMI+). Cathodic and anodic polarization of Al in A1C13-[P14,6,6,6]C1 (Xmc13 = 0.67) was studied at temperatures ranging from 347 to 423 K. The Butler-Volmer equation was fitted to the plots by varying the kinetic parameters. The cathodic reaction was found to be diffusion limited and the anodic reaction is limited by passivation at lower temperatures. The overpotential required for electrodissolution of Al was found to be higher than for electrodeposition. Aluminium was electrodeposited using both an electrowinning setup (chlorine evolution anode reaction) and electrorefining setup (Al dissolution anode reaction). The deposits were characterized in terms of morphology, current efficiency and power consumption. A variety of deposit morphologies were observed ranging from smooth, to spherical to dendritic, and in some cases, the IL was occluded in the deposit. The current efficiency and power consumption were negatively impacted by the presence of H2O and HCl present in the as-received ILs and by C12(g) generated by the anode reaction in the case of the electrowinning setup. HC1 was removed by cyclic polarization or corrosion of pure Al, resulting in current efficiencies above 90%. Aluminium was electrodeposited using the electrorefining setup with anode-cathode spacing of 2 mm at power consumption as low as 0.6 kWhr/kg-Al. This is very low compared with industrial Al electrorefining and Al electroplating using the National Bureau of Standards bath, which require 15-18 kWhr/kg-Al and 18 kWhr/kg-Al, respectively. However, due to low solution conductivity the power consumption increases significantly with increased anode-cathode spacing. Titanium tetrachloride was found to be soluble in [P14,6,6,6]Cl and increases the conductivity of the solution. Attempts to reduce the Ti(IV) included corrosion of titanium metal, corrosion of magnesium metal powder and cathodic polarization. Despite a few attempts, the electro-deposition of Ti was not observed. At this point, titanium electrodeposition from phosphonium based ILs does not appear feasible.
32

Reactions of gaseous halocarbons with clean titanium surfaces.

Summers, Wayne Richard. January 1970 (has links)
No description available.
33

Ionic liquid electrochemical processing of reactive metals

Vaughan, James 05 1900 (has links)
Ionic liquids (ILs) were studied as solvents for electrochemical reactions with the intent to devise metallurgical processes for Al, Mg and Ti that are less energy intensive and operate at lower temperatures than current industrial practice. Tetra-alkyl phosphonium ILs are on the low end of the IL cost spectrum and are regarded as understudied compared with imidazolium and pyridinium ILs. They are also known to be more thermally stable. The density, viscosity and conductivity of the phosphonium ILs and metal salt-IL mixtures were measured. The conductivity of the phosphonium ILs tested were found to be roughly an order of magnitude lower than imidazolium ILs; this is attributed to the relatively large cation size and localized charge. Linear density-temperature functions are presented. The viscosity and conductivity temperature relationship was modeled using the Vogel-Tamman-Fulcher (VTF) equation. The electrochemical window of A10341'14,6,6,610 was studied on a Pt substrate over a wide range of A1C13 concentrations using cyclic voltammetry (CV). It was found that the tetra-alkyl phosphonium cation is on the order of 800 mV more electrochemically stable than the 1-ethyl-3-methyl imidazolium (EMI+). Cathodic and anodic polarization of Al in A1C13-[P14,6,6,6]C1 (Xmc13 = 0.67) was studied at temperatures ranging from 347 to 423 K. The Butler-Volmer equation was fitted to the plots by varying the kinetic parameters. The cathodic reaction was found to be diffusion limited and the anodic reaction is limited by passivation at lower temperatures. The overpotential required for electrodissolution of Al was found to be higher than for electrodeposition. Aluminium was electrodeposited using both an electrowinning setup (chlorine evolution anode reaction) and electrorefining setup (Al dissolution anode reaction). The deposits were characterized in terms of morphology, current efficiency and power consumption. A variety of deposit morphologies were observed ranging from smooth, to spherical to dendritic, and in some cases, the IL was occluded in the deposit. The current efficiency and power consumption were negatively impacted by the presence of H2O and HCl present in the as-received ILs and by C12(g) generated by the anode reaction in the case of the electrowinning setup. HC1 was removed by cyclic polarization or corrosion of pure Al, resulting in current efficiencies above 90%. Aluminium was electrodeposited using the electrorefining setup with anode-cathode spacing of 2 mm at power consumption as low as 0.6 kWhr/kg-Al. This is very low compared with industrial Al electrorefining and Al electroplating using the National Bureau of Standards bath, which require 15-18 kWhr/kg-Al and 18 kWhr/kg-Al, respectively. However, due to low solution conductivity the power consumption increases significantly with increased anode-cathode spacing. Titanium tetrachloride was found to be soluble in [P14,6,6,6]Cl and increases the conductivity of the solution. Attempts to reduce the Ti(IV) included corrosion of titanium metal, corrosion of magnesium metal powder and cathodic polarization. Despite a few attempts, the electro-deposition of Ti was not observed. At this point, titanium electrodeposition from phosphonium based ILs does not appear feasible.
34

Alkylglucosides physical-chemical properties /

Nilsson, Frederik. January 1998 (has links)
Thesis (doctoral)--Lund University, 1998. / Added t.p. with thesis statement inserted.
35

Electron spin resonance studies of radicals produced in glassy and polycrystalline alkyl iodides by gamma radiolysis

Fenrick, Harold William, January 1966 (has links)
Thesis (Ph. D.)--University of Wisconsin, 1966. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliography.
36

Ionic liquid electrochemical processing of reactive metals

Vaughan, James 05 1900 (has links)
Ionic liquids (ILs) were studied as solvents for electrochemical reactions with the intent to devise metallurgical processes for Al, Mg and Ti that are less energy intensive and operate at lower temperatures than current industrial practice. Tetra-alkyl phosphonium ILs are on the low end of the IL cost spectrum and are regarded as understudied compared with imidazolium and pyridinium ILs. They are also known to be more thermally stable. The density, viscosity and conductivity of the phosphonium ILs and metal salt-IL mixtures were measured. The conductivity of the phosphonium ILs tested were found to be roughly an order of magnitude lower than imidazolium ILs; this is attributed to the relatively large cation size and localized charge. Linear density-temperature functions are presented. The viscosity and conductivity temperature relationship was modeled using the Vogel-Tamman-Fulcher (VTF) equation. The electrochemical window of A10341'14,6,6,610 was studied on a Pt substrate over a wide range of A1C13 concentrations using cyclic voltammetry (CV). It was found that the tetra-alkyl phosphonium cation is on the order of 800 mV more electrochemically stable than the 1-ethyl-3-methyl imidazolium (EMI+). Cathodic and anodic polarization of Al in A1C13-[P14,6,6,6]C1 (Xmc13 = 0.67) was studied at temperatures ranging from 347 to 423 K. The Butler-Volmer equation was fitted to the plots by varying the kinetic parameters. The cathodic reaction was found to be diffusion limited and the anodic reaction is limited by passivation at lower temperatures. The overpotential required for electrodissolution of Al was found to be higher than for electrodeposition. Aluminium was electrodeposited using both an electrowinning setup (chlorine evolution anode reaction) and electrorefining setup (Al dissolution anode reaction). The deposits were characterized in terms of morphology, current efficiency and power consumption. A variety of deposit morphologies were observed ranging from smooth, to spherical to dendritic, and in some cases, the IL was occluded in the deposit. The current efficiency and power consumption were negatively impacted by the presence of H2O and HCl present in the as-received ILs and by C12(g) generated by the anode reaction in the case of the electrowinning setup. HC1 was removed by cyclic polarization or corrosion of pure Al, resulting in current efficiencies above 90%. Aluminium was electrodeposited using the electrorefining setup with anode-cathode spacing of 2 mm at power consumption as low as 0.6 kWhr/kg-Al. This is very low compared with industrial Al electrorefining and Al electroplating using the National Bureau of Standards bath, which require 15-18 kWhr/kg-Al and 18 kWhr/kg-Al, respectively. However, due to low solution conductivity the power consumption increases significantly with increased anode-cathode spacing. Titanium tetrachloride was found to be soluble in [P14,6,6,6]Cl and increases the conductivity of the solution. Attempts to reduce the Ti(IV) included corrosion of titanium metal, corrosion of magnesium metal powder and cathodic polarization. Despite a few attempts, the electro-deposition of Ti was not observed. At this point, titanium electrodeposition from phosphonium based ILs does not appear feasible. / Applied Science, Faculty of / Materials Engineering, Department of / Graduate
37

Kinetic Studies of the Reactions of Alkyl and Silyl Hydrides

Yuan, Jessie (Jessie Win-Jae) 08 1900 (has links)
The Kinetics of the reactions involving alkyl and silyl hydrides were studied by the flash photolysis / resonance fluorescence technique. The reactions of alkyl radicals (R = C₂H₅, i-C₃H₇, t-C₄H₉) with HBr have been studied at room temperature and the rate constants obtained (units are in cm³ s^-1 ) are: k₃.₃ = (7.01 ± 0.15) x 10^-12, k₃.₂ = (1.25 ± 0.06) x 10^-11, k₃.₁ = (2.67 ± 0.13) x 10^-11 These results, combined with previously determined reverse rate constants and other kinetic information, yield bond dissociation enthalpies (units in kJ mol^-1) at 298 K : primary C-H in C₂H₅-H (423.6 ± 2), secondary C-H in i-C₃H₇-H (409.9 ± 2), tertiary C-H in t-C₄H₉-H (405.1 ± 2). These rate constants and bond energies are in good agreement with previous results.
38

Reactions of gaseous halocarbons with clean titanium surfaces.

Summers, Wayne Richard. January 1970 (has links)
No description available.
39

Synthesis and Characterization of Tailored Photoactive Macromolecules

Trenor, Scott Russell 27 April 2004 (has links)
Coumarin and cinnamate derivatives were positioned as either polymer chain ends or side groups to synthesize photoactive macromolecules and gain the ability to reversibly control molecular weight and crosslink density using UV light. The cinnamates and coumarins were reacted onto the polymers via multiple reaction pathways. Polymers were functionalized with coumarin or cinnamate groups via an esterification reaction between hydroxyl functionalities and an acid chloride derivatized coumarin group. In addition to the esterification reaction, cinnamates were also coupled to polymers via a ring opening reaction between a hydroxyl functionalized cinnamate derivative and a maleic anhydride repeat unit copolymerized into the polymer. Both functional groups undergo a [2π + 2π] photodimerization reaction (coumarin groups in the UVA and cinnamate groups in the UVB), which was utilized to crosslink and chain-extend macromolecules. Coumarin dimers possess the additional ability to photocleave and thus reverse when irradiated at 254 nm. The coumarin reversible photodimerization reaction was utilized to reversibly increase the molecular weight and molecular weight distribution of coumarin-functionalized PEG monols and diols. For example, the number average molecular weight of the coumarin-functionalized PEG diol doubled and the molecular weight distribution increased from 1.08 to 2.75 when exposed to 110 J cm⁻² of UVA irradiation. Subsequent photocleavage (UVC irradiation, 2 J cm⁻²) of the chain-extended PEGs, cleaved coumarin dimers decreasing the molecular weight and molecular weight distribution to their original values. A number of poly(alkyl acrylate) and poly(methyl acrylate) systems were functionalized with coumarin groups to study the effect of the glass transition temperature and alkyl ester side group composition on the photodimerization reaction and subsequent crosslinking. The glass transition temperature (T<sub>g</sub>) acted as an on/off switch for the photodimerization reaction. While the absolute difference between T<sub>g</sub> and irradiance temperature did not affect the rate or extent of photodimerization reaction, polymers with a T<sub>g</sub> greater than the irradiance temperature displayed less reaction than those with a T<sub>g</sub> lower than the irradiance temperature. The final extent of conversion was controlled by a complex combination of factors including alkyl ester side chain steric bulkiness. Coumarin-functionalized alkyl acrylates based on ethylhexyl acrylate were tested as detachable PSAs. A 98% decrease in the adhesive peel strength was observed after exposure to UVA irradiation. Cinnamate groups were utilized in the design and synthesis of UV-curable hot melt pressure sensitive adhesives (PSAs). The cinnamate groups were attached to the PSAs to provide a method to increase molecular weight and add a small amount of crosslinking leading to an increase the adhesive strength of the PSAs. Broadband UV irradiation from a laboratory scale industrial lamp increased the peel strength of the adhesives. Postcure of the irradiated cinnamate-functionalized UV-curable hot melt PSAs was reduced compared to photoinitiated free-radical photocurable UV-curable hot melt PSAs. / Ph. D.
40

Toxicity and metabolism of alkyl-polycyclic aromatic hydrocarbons in fish

Turcotte, Dominique 29 August 2008 (has links)
Alkyl-polycyclic aromatic hydrocarbons (alkyl-PAHs) constitute more than 90% of the total PAHs in crude oil and are the main constituents toxic to fish. Little characterization of alkyl-PAHs has been reported and is needed to predict the effects of crude oil following spills. The objectives of this thesis were: (1) to evaluate the toxicity of alkyl-phenanthrenes and alkyl-anthracenes to the early life-stages of medaka (Oryzias latipes) using the partition controlled delivery of toxicants (PCD); (2) to investigate the effect of light on alkyl-anthracene toxicity; (3) to further characterize the PCD method; (4) to better understand alkyl-PAH mechanisms of toxicity; and (5) to identify the major phase I and phase II alkyl-PAH metabolites in rainbow trout (Oncorhynchus mykiss) and in medaka by both in vitro and in vivo methods. It was determined that the toxicity of both series of alkyl-PAHs increased with the number of carbon substituents on the rings. Some alkyl-PAHs had EC50 values lower than the value from conventional semi-static exposure methods. These values were below the water solubility limit, consistent with the ability of PCD to correct for values from nominal concentrations above solubility. PCD provided stable concentrations for up to 17 days but could not always compensate for losses of alkyl-anthracenes by photodegradation. Both series of alkyl-PAHs were toxic through different mechanisms that resulted from their physical and chemical properties. Alkyl-phenanthrenes such as 7-isopropyl-1-methylphenanthrene (retene) were more toxic to medaka embryos than phenanthrene. The appearance of blue sac disease suggested toxicity enhancement through the aryl hydrocarbon receptor pathway. Alkyl-anthracenes were toxic by narcosis in the absence of light and by phototoxicity in the presence of light. The photoproducts of alkyl-anthracenes were not toxic to fish. The in vitro phase I metabolism by rainbow trout CYP1a enzymes and in vivo phase II metabolism in rainbow trout produced alkyl-anthracenes metabolites substituted mainly on the ring system. The phase II in vivo metabolites of alkyl-phenanthrenes in medaka larvae were substituted mainly on their alkyl chains. For all alkyl-PAHs, a predominance of glucuronide conjugates was identified in the phase II metabolites. This characterization of the toxicity of alkyl-PAHs may contribute to predicting the toxicity of crude oil based on its composition. / Thesis (Ph.D, Chemistry) -- Queen's University, 2008-08-29 14:18:10.308

Page generated in 0.0311 seconds