• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution to the study of the efficacy and the mechanism of action of the alkylating peptide prolyl-m-sarcolysyl-p-fluorophenylalanine (PSF)

Dierickx, Karen 05 November 2008 (has links)
The search for more effective treatment strategies in melanoma led to many new innovative approaches aiming at different molecular targets. Chemotherapy still remains the most effective treatment and many efforts are put in order to improve targeting and delivery of the chemotherapeutic agents. Among these, peptide conjugates of anticancer drugs were designed to increase stability, cell penetration, specificity and accumulation in cancer cells. We as well as others evaluated such a conjugate, termed PSF (L-prolyl-m-L-sarcolysyl-L-p-fluorophenylalanine-ethylester) in terms of its cytotoxicity in vitro and in vivo using a human melanoma tumor as a model, its stability, transport, and metabolisation. <p>By comparing the cytotoxicity of PSF and melphalan towards different cancer primary melanoma cell cultures, we noticed some interesting observations: PSF displayed the same toxicity pattern both in short (2h) and long term (24h) cell exposures whereas melphalan and m-sarcolysin needed long term exposure to reach the same toxicity. This could indicate that PSF very quickly penetrates the cells in accordance with what has been shown with red blood cells (RBCs). PSF has shown a much better and quicker penetration into the cells in vitro as compared to melphalan. <p>In this present work, the cytotoxic effect of PSF was further evaluated in vivo using a standardized nude mice tumor model bearing a human melanoma. First, the acute toxicity in rats and mice and the maximum tolerated dose were determined. After a dose-escalation study one dose was singled out and tested as a single dose and as a fractionated dose. PSF was able to reach the tumor site and a dose-response relationship was observed. The IP administration of fractionated doses of PSF had significantly better effect on tumor growth inhibition, regression and regrowth than single dose administration and this without any evidence for general toxicity monitored by animal weight loss. We also compared the efficacy of PSF to its parent drug m-sarcolysin, melphalan and cyclophosphamide and observed that PSF was much more active than both melphalan and m-sarcolysin at the same molar doses.<p>Body distribution of the 14C-labelled PSF revealed ratios of 2.4 and 1.5 compared to muscle tissue for the two melanoma tumors evaluated with no significant and stable accumulation in any vital organ. The amount of tracer was still high in the blood after 24 hours explaining the high radioactivity in the kidney and partly in the liver. Interestingly, the spleen had an unusual high radioactivity uptake reflecting the exceptional binding of the tracer to blood cells (BC), while the pancreas very high load was an indicator of protease-mediated specific delivery and strongly support our hypothesis elaborated on the basis of in vitro results. <p><p>Our in vitro data point to a particular mechanism of action of PSF based on the transport of PSF through the body by the rapid binding to blood cells and the delivery at the tumor site by the subsequent release of its active metabolites due to cleavage by tumor-associated proteases.<p>Concerning the binding of PSF to membranes and its transport the following observations were made: while PSF was stable in human plasma, it disappeared very quickly in whole blood along with the generation of a main metabolite: m-sarcolysin. The presence of BC membranes was required for both binding and generating the metabolites. Binding to natural or artificial membranes was achieved and only competition with melanoma cells or proteolytic enzymes such as dispase, led to the generation of active metabolites. The different metabolites were isolated using preparative LC and were then identified using Electrospray Ionisation Mass Spectrometry (ESI). Three metabolites, of which m-sarcolysin was the main one, were identified all bearing the chloroethyl alkylating group. <p>Enzymatic catalysis was further supported by a set of experiments where the enzymatic activity was non-specifically and specifically inhibited. In order to look at the effect of extracellular matrix proteases on PSF, three representatives of ECM proteases were incubated with PSF: collagenase A had no effect, but both dispase and trypsine were able to process PSF. <p>The following data indicate the higher processing of PSF in the presence of cells with a higher proteolytic activity and thus the delivery of the blood cell-bound PSF. When comparing BC with melanoma cells (MC), the latter showed a higher ability to bind and process PSF both by membrane-associated and most interestingly soluble proteases. A lot of families of enzymes are reported to be overexpressed by melanoma cells including: metalloproteases, cysteine cathepsins, serine proteases and aminopeptidases. All the melanoma cells and cell lines evaluated were able to generate PSF active metabolites. <p>To identify the families of enzymes expressed on the membrane of melanoma cells that might be involved in the mechanism of action of PSF, we performed 2D-gel electrophoresis on their membrane extracts. The 2D-gels experiments revealed the presence of proteins compatible with enzymes known to be important in melanoma and further work is needed to identify the individual enzymes involved by using mass spectrometry and Western blotting. <p><p>Both our in vitro and in vivo findings strongly suggest that not only melanoma tumor cells and tumor sites but other types of tumors as well may be targets for the toxic activity of PSF owing to their much higher load in proteolytic enzymes that are closely related to their invasive potential. The transport of PSF by the blood cells and the release of its metabolites at the tumor site result in a low amount of drug in its free soluble form within the blood and this may explain the relatively lower side-effects observed. PSF is thus expected to have a much better therapeutic index than conventional alkylating agents. This original mechanism of drug delivery may well be extended to other cancer and non-cancer drugs than alkylating agents.<p> / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
2

Nouveaux aspects cellulaires et moléculaires du remodelage vasculaire pulmonaire dans l’HTAP / New cellular and molecular aspects of the vascular remodeling in PAH

Ranchoux, Benoît 17 June 2015 (has links)
L’hypertension artérielle pulmonaire (HTAP) est une maladie rare caractérisée par un remodelage des artères pré-capillaires pulmonaires lié à une dysfonction des cellules endothéliales (CE) conduisant à une prolifération cellulaire vasculaire. Cette prolifération conduit à une obstruction progressive du lit artériel et à l’augmentation des résistances vasculaires. L’hypertension pulmonaire (HTP) qui en résulte provoque une hypertrophie du ventricule droit aboutissant à la défaillance cardiaque et à la mort du patient. Actuellement le seul recours possible est la transplantation pulmonaire. Les mécanismes responsables de ce remodelage vasculaire sont encore peu connus. Les premiers travaux présentés mettent en évidence in situ un nouveau mécanisme impliqué dans ce remodelage. Au cours de ce processus, appelé transition endothélio-mésenchymateuse (EndoMT), les CE se désolidarisent de l’endothélium vasculaire et envahissent l’espace sous endothélial. Ce mécanisme s’accompagne d’une perte progressive du phénotype endothélial et du gain d’un phénotype mésenchymateux invasif et proliférant. L’EndoMT est impliquée dans la formation des lésions intimale et plexiforme. L’inhibition de l’EndoMT a donné des résultats prometteurs dans des modèles in vivo et in vitro d’HTAP. Cette découverte ouvre une nouvelle voie pour le traitement de la maladie. Dans un second projet nous avons confirmé le lien suspecté entre les chimiothérapies et la maladie veino-occlusive pulmonaire (MVOP), une forme d’HTP touchant les veines et veinules pulmonaires. L’étude des cas rapportés de MVOP consécutive à une chimiothérapie indiquent une forte incidence des agents alkylants, notamment du cyclophosphamide (CP), sur le développement de la MVOP. L’exposition au CP a provoqué une HTP associée à des lésions post-capillaires chez 3 espèces animales (souris, rat et lapin) confirmant ce lien. Nous espérons que nos travaux aboutiront à une plus grande vigilance concernant cette complication rare et sévère de l’exposition aux agents alkylants. De plus, nos travaux in vivo ont permis de mettre au point le tout premier modèle expérimental de MVOP. Au cours du dernier projet présenté, nous avons démontré que le nebivolol, un β-bloquant (β1 antagoniste β2 et β3 agoniste ayant un effet vasodilatateur) de 3ème génération, permettait d’améliorer les paramètres hémodynamiques et morphologiques, ainsi que la dysfonction endothéliale, liés à l’HTAP dans les modèles in vivo et in vitro. Ces travaux suggèrent la nécessité de réévaluer les recommandations actuelles, basées sur l’étude de β-bloquants non spécifiques de 1ère génération, qui proscrivent leur utilisation dans l’HTAP. En revisitant plusieurs aspects du remodelage vasculaire, ma thèse contribue ainsi à l’innovation thérapeutique dans l’HTAP. / Pulmonary arterial hypertension (PAH) is a rare disease characterized by a severe modeling of the precapillary pulmonary arteries related to an endothelial cells (EC) dysfunction leading to vascular cell proliferation. This proliferation leads to a progressive obstruction of the distal pulmonary arterial bed and increases pulmonary vascular resistance. The resulting pulmonary hypertension (PH) leads to a progressive right ventricular hypertrophy, and subsequent right heart failure and death unless the patient receives a lung transplantation. The primary mechanisms that trigger the vascular remodeling remain poorly understood. In the first presented study, we discovered in situ a new pathological process involved in vascular remodeling in PAH. During this process called endothelial-to-mesenchymal transition (EndoMT), the EC lose their cell-junctions to leave the endothelium and invade the subendothelial space. This phenomenon involves the progressive loss of the endothelial phenotype and the gain of a pro-invasive and pro-proliferative mesenchymal phenotype. This process is implicated in the pathogenesis of intimal and plexiform lesions. The inhibition of EndoMT gave promising results in experimental in vivo and in vitro models of PAH. This finding may have therapeutic implications for PAH. During a second project presented, we confirmed the suspected potential link between chemotherapies and the pulmonary veino-occlusive disease (PVOD). PVOD is a PH with vein and venular lesions. The systematic review of cases of chemotherapy induced PVOD cases suggests that alkylating agents, and cyclophosphamide (CP) in particular, represents a risk factor for the development of PVOD. In experimental models, CP exposure induced PH in three different animal models (mouse, rat, and rabbit). We hope that our findings will allow achieving greater vigilance against this rare and severe complication after alkylating agents exposure. Moreover our in vivo results lead to the development of the 1st experimental model of PVOD. In the last part, we demonstrated that nebivolol, a 3rd generation β-blocker (β1 antagonist, β2 & β3 agonist with vasodilator effect), improved PAH in in vitro and in vivo models. The actual guidelines, based on results obtained with non-specific 1st generation β-blockers, advice against the use of β-blockers in PAH. Our results suggest that the recommendation against β-blockers might be reevaluated taking into consideration their generation and specificity. By revisiting many aspects of vascular remodeling, my thesis contributes to therapeutic innovation in PAH.

Page generated in 0.0412 seconds