• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

All-optical Microwave Signal Processing

Han, Yichen 22 September 2011 (has links)
Microwave signal processing in the optical domain is investigated in this thesis. Two signal processors including an all-optical fractional Hilbert transformer and an all-optical microwave differentiator are investigated and experimentally demonstrated. Specifically, the photonic-assisted fractional Hilbert transformer with tunable fractional order is implemented based on a temporal pulse shaping system incorporating a phase modulator. By applying a step function to the phase modulator to introduce a phase jump, a real-time fractional Hilbert transformer with a tunable fractional order is achieved. The microwave bandpass differentiator is implemented based on a finite impulse response (FIR) photonic microwave delay-line filter with nonuniformly-spaced taps. A microwave bandpass differentiator based on a six-tap nonuniformly-spaced photonic microwave delay-line filter with all- positive coefficients is designed, simulated, and experimentally demonstrated. The reconfigurability of the microwave bandpass differentiator is experimentally investigated. The employment of the differentiator to perform differentiation of a bandpass microwave signal is also experimentally demonstrated.
2

All-optical Microwave Signal Processing

Han, Yichen 22 September 2011 (has links)
Microwave signal processing in the optical domain is investigated in this thesis. Two signal processors including an all-optical fractional Hilbert transformer and an all-optical microwave differentiator are investigated and experimentally demonstrated. Specifically, the photonic-assisted fractional Hilbert transformer with tunable fractional order is implemented based on a temporal pulse shaping system incorporating a phase modulator. By applying a step function to the phase modulator to introduce a phase jump, a real-time fractional Hilbert transformer with a tunable fractional order is achieved. The microwave bandpass differentiator is implemented based on a finite impulse response (FIR) photonic microwave delay-line filter with nonuniformly-spaced taps. A microwave bandpass differentiator based on a six-tap nonuniformly-spaced photonic microwave delay-line filter with all- positive coefficients is designed, simulated, and experimentally demonstrated. The reconfigurability of the microwave bandpass differentiator is experimentally investigated. The employment of the differentiator to perform differentiation of a bandpass microwave signal is also experimentally demonstrated.
3

All-optical Microwave Signal Processing

Han, Yichen 22 September 2011 (has links)
Microwave signal processing in the optical domain is investigated in this thesis. Two signal processors including an all-optical fractional Hilbert transformer and an all-optical microwave differentiator are investigated and experimentally demonstrated. Specifically, the photonic-assisted fractional Hilbert transformer with tunable fractional order is implemented based on a temporal pulse shaping system incorporating a phase modulator. By applying a step function to the phase modulator to introduce a phase jump, a real-time fractional Hilbert transformer with a tunable fractional order is achieved. The microwave bandpass differentiator is implemented based on a finite impulse response (FIR) photonic microwave delay-line filter with nonuniformly-spaced taps. A microwave bandpass differentiator based on a six-tap nonuniformly-spaced photonic microwave delay-line filter with all- positive coefficients is designed, simulated, and experimentally demonstrated. The reconfigurability of the microwave bandpass differentiator is experimentally investigated. The employment of the differentiator to perform differentiation of a bandpass microwave signal is also experimentally demonstrated.
4

All-optical Microwave Signal Processing

Han, Yichen January 2011 (has links)
Microwave signal processing in the optical domain is investigated in this thesis. Two signal processors including an all-optical fractional Hilbert transformer and an all-optical microwave differentiator are investigated and experimentally demonstrated. Specifically, the photonic-assisted fractional Hilbert transformer with tunable fractional order is implemented based on a temporal pulse shaping system incorporating a phase modulator. By applying a step function to the phase modulator to introduce a phase jump, a real-time fractional Hilbert transformer with a tunable fractional order is achieved. The microwave bandpass differentiator is implemented based on a finite impulse response (FIR) photonic microwave delay-line filter with nonuniformly-spaced taps. A microwave bandpass differentiator based on a six-tap nonuniformly-spaced photonic microwave delay-line filter with all- positive coefficients is designed, simulated, and experimentally demonstrated. The reconfigurability of the microwave bandpass differentiator is experimentally investigated. The employment of the differentiator to perform differentiation of a bandpass microwave signal is also experimentally demonstrated.

Page generated in 0.324 seconds