• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Control of inflammation, helper T cell responses and regulatory T cell function by Bcl6

Sawant, Deepali Vijay 13 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Regulatory T (Treg) cells represent an important layer of immune-regulation indispensible for curtailing exuberant inflammatory responses and maintaining self-tolerance. Treg cells have translational potential for autoimmunity, inflammation, transplantation and cancer. Therefore, delineating the molecular underpinnings underlying the development, suppressor function and stability of Tregs is particularly warranted. The transcriptional repressor Bcl6 is a critical arbiter of helper T cell fate, promoting the follicular helper (Tfh) lineage while repressing Th1, Th2 and Th17 differentiation. Bcl6-deficient mice develop a spontaneous and severe Th2-type inflammatory disease including myocarditis and pulmonary vasculitis, suggesting a potential role for Bcl6 in Treg cell function. Bcl6-deficient Treg cells are competent in controlling Th1 responses, but fail to control Th2 inflammation in an airway allergen model. Importantly, mice with Bcl6 deleted specifically in the Treg lineage develop severe myocarditis, thus highlighting a critical role for Bcl6 in Treg-mediated control of Th2 inflammation. Bcl6-deficient Tregs display an intrinsic increase in Th2 genes and microRNA-21 (miR-21) expression. MiR-21 is a novel Bcl6 gene target in T cells and ectopic expression of miR-21 directs Th2 differentiation in non-polarized T cells. MiR-21 is up-regulated in mouse models of airway inflammation and also in human patients with eosinophilic esophagitis and asthma. Thus, miR-21 is a clinically relevant biomarker for Th2-type pathologies. Our results define a key function for Bcl6 in repressing Gata3 function and miR-21 expression in Tregs, and provide greater understanding of the control of Th2 inflammatory responses by Treg cells.

Page generated in 0.0758 seconds