Spelling suggestions: "subject:"alliages ferromanganèse."" "subject:"alliages ferromanganese.""
1 |
Conception et développement d'un procédé d'électrodéposition d'alliages biodégradables à base de fer pour stents cardiovasculairesLotfollahi, Majid 27 January 2024 (has links)
Les maladies cardiovasculaires (MCV) sont les principales responsables de décès dans le monde. L'athérosclérose est la forme la plus répandue de MCV, causée en partie et dans les cas extrêmes par l'occlusion des vaisseaux en raison du vieillissement ou des facteurs de risque. L’implantation d’un stent vasculaire est le traitement le plus efficace pour les traitements des artères sténosées, en fournissant un support mécanique pour rétablir la circulation sanguine. En considérant une période approximative d'un an pour la guérison des artères, les Métaux Biodégradables (MB) ont été proposés et développées pour la fabrication de stents. Ils sont censés se dissoudre complètement après un certain délai, offre un support mécanique temporaire, empêcher des complications à long terme. Présentant des propriétés mécaniques supérieures par rapport aux alliages à base de Mg et à base de Zn, les MB à base de Fe, en particulier les alliages binaires de Fe-Mn, sont parmi les candidats les plus appropriés pour la fabrication des stents cardiovasculaires. La fabrication des stents est un procédé multi-étape qui inclut l’extrusion, le coupe laser, des traitements thermiques, et des procédés de neutralisation, et un fini de surface. L'électrodéposition s'est déjà révélé être une méthode efficace pour la micro-fabrication telle que le stent en fer pur. Par conséquent, ce travail porte sur la conception et le développement d'un procédé d'électrodéposition pour la production d'alliages biodégradables binaires de Fe-Mn pour l'application de stents vasculaires. Dans ce projet, deux approches ont été étudiées. Dans la première, l'alliage binaire de Fe-Mn a été fabriqué par un processus d'interdiffusion entre des couches précédemment déposées de fer pur et de manganèse pur. Dans la deuxième, le co-dépôt d'alliage de Fe-Mn était visé par un dépôt simultané à partir du même électrolyte. Les deux approches aboutissent à un alliage binaire de fer et de manganèse, mais elles présentent certaines limites. Dans le premier, une couche de diffusion de quelques micromètres d'épaisseur s'est formée à leur interface, mais les surfaces extérieures ont été partiellement oxydées. Dans ce dernier, le manganèse a été déposé jusqu'à 7% en poids, mais la couche déposée souffre de faibles propriétés physiques. / Cardiovascular diseases (CVDs) are the leading reason for mortality in the world. Atherosclerosis is the most widespread form of CVD, partly caused in extreme cases by vessel occlusion because of aging or risk factors.Stenting is the most effective treatment for late atherosclerosis by providing mechanical support to re-open the arteries. It takes approximately one-year period for artery healing, so biodegradable metals (BMs) have been considered for stent manufacturing. They are supposed to dissolve completely after a specific time while providing temporary mechanical support, with imposing lower long-term complications. Showing superior mechanical properties compared to Mg-based and Zn-based alloys, Fe-based BMs, particularly binary Fe-Mn, are among the most suitable candidates for cardiovascular stents. The stent fabrication is a multi-step process that involves many steps, namely, extrusion, laser cutting, thermal treatment,neutralization processes, surface finishing. Electrodeposition has shown to be an efficient method for microfabrication, such as the pure iron stent.Therefore, this work deals with the development of an electrodeposition process for the production of binary Fe-Mn biodegradable alloys for vascular stent application. In this project, two different approaches for the development of the binary Fe-Mn alloy are explored. In the first, binary Fe-Mn alloy was approached through the interdiffusion process between the previously deposited layers of pure iron and pure manganese. In the second, however, the co-deposition of Fe-Mn alloy was aimed through simultaneous deposition from the same electrolyte. Both approaches result in binary iron and manganese alloy, but they showed some limitations. In the former, a diffusion layer of some micrometers thickness was formed at their interface, but exterior surfaces were partially oxidized. In the latter, manganese was co-deposited up to 7 wt. %, but the deposited layer suffers from low physical properties.
|
2 |
Étude de la dégradation in-vitro d'alliages Fe-Mn-C pour des applications de stents cardiovasculairesMouzou, Essowè 24 April 2018 (has links)
Parmi les aciers, les alliages Fe-Mn-C présentent un meilleur compromis entre une forte résistance à la traction (Rm 1000 MPa) et une bonne ductilité (A(%) 40%) dû à un mode de déformation basé à la fois sur le glissement de dislocations et un maclage intense (effet TWIP). À cette combinaison de propriétés mécaniques s’ajoute le fait que les alliages Fe-Mn-C ne sont pas résistants à la corrosion surtout dans un environnement riche en ions chlorure (Cl-), ce qui fait d’eux des matériaux potentiellement utilisables pour des applications de stents biodégradables. En effet, la tendance à la corrosion de ces alliages pourrait être exploitée efficacement pour des applications biomédicales. Cependant le contrôle de la dégradation reste un élément primordial pour les métaux biodégradables. Étant à l’origine conçus pour l’industrie de l’automobile il n’existe aucun standard ni protocole pour effectuer les tests de dégradation in-vitro pour cette catégorie d’alliages. Dans ce contexte, l’objectif de cette thèse est d’étudier le comportement à la dégradation in-vitro d’alliages Fe-Mn-C à effet TWIP dans différentes solutions pseudo-physiologiques dans des conditions semblables au comportement du matériau une fois implanté dans l’artère. Étant donné que lors du déploiement, le matériau utilisé comme stent subit une déformation plastique, et qu’une fois déployé, sa dégradation dans l’artère se fait dans un environnement riche en CO2, l’étude a également porté sur l’influence de la déformation plastique ainsi que l’effet d’un environnement riche en CO2 sur la vitesse de dégradation. Les résultats obtenus montrent que le pourcentage de déformation plastique n’a pas d’influence significative sur la vitesse de dégradation. Par contre, le pourcentage de Mn dans l’alliage, la présence d’une atmosphère riche en CO2, la nature et la quantité d’ions présents dans les solutions pseudo-physiologiques ou encore la présence de protéines telle que l’albumine ont une grande influence sur la nature des produits de dégradation formés ainsi que la vitesse de dégradation des alliages Fe-Mn-C. / Among steels, Fe-Mn-C alloys achieve the best compromise between high ultimate strength (UTS1000 MPa) and good ductility ((%) 40%) with a deformation mode based on both the dislocations glide and twinning induced plasticity effect (TWIP effect). At this combination of mechanical properties it can be add the fact that Fe-Mn-C alloys are low corrosion resistant in rich chloride ions (Cl-) environment. This good combination of mechanical and low corrosion properties makes them potentially useful materials for biodegradable stents applications. In fact their tendency to be low corrosion resistant can be exploited efficiently for biomedical applications by controlling their degradation behavior. However, Fe-Mn-C alloys are initially designed for the automotive industry in order to get lighter body metals which are able to absorb energy in case of impact. So there is no standard or protocol to perform in-vitro degradation tests for this class of alloys for use as biodegradable stents. This thesis was therefore devoted to studying the degradation behavior of some Fe-Mn-C alloys with TWIP effect in pseudo-physiological solutions. When deploying the stent into arteries they undergo severe plastic deformation, and once deployed, degradation occurs in a CO2-rich environment, therefore this study also examined the influence of plastic deformation and CO2 gas pressure effect on the degradation behavior in order to have experimental conditions that are closer to what happens in the artery. The results obtained show that the plastic deformation has no significant effect on the degradation rate, on the other hand the percentage of Mn, the presence of CO2 partial pressure, the presence and quantities of carbonate and phosphate ions in the solution or the presence of albumin have a great influence on the formation of degradation products and therefore the degradation rate of the Fe-Mn-C alloys.
|
Page generated in 0.0455 seconds