• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mapping cAMP Signalling by Nuclear Magnetic Resonance Spectroscopy

Das, Rahul 04 1900 (has links)
Cyclic AMP (cAMP) is a second messenger that translates extracellular signals into tightly regulated biological responses. The cAMP binding domain (CBD) is a conserved regulatory switch that binds to cAMP and allosterically controls multiple cellular functions. All CBDs share a common architecture comprised of α- and β-subdomains. cAMP binds to the phosphate binding cassette (PBC) nested within the β-subdomain. In mammals the main cAMP receptors are protein kinase A (PKA), guanine exchange factors (EPAC) and ion channel proteins, including both the hyperpolarization-activated cyclic nucleotide-dependent channels (HCN channels) and the cyclic nucleotide-gated channels (CNG channels). Impaired activities of these proteins are associated with diabetes, cardiovascular diseases, cancer and Alzheimer's disease. Therefore, these proteins represent promising therapeutical targets. However, the mechanism of their cAMP-dependent allosteric control is not completely understood. In the present thesis we have studied the allosteric mechanism of activation in PKA and EPAC using an NMR-based approach and we have proposed a model explaining how cAMP allosterically controls the activity of PKA and EPAC. Binding of cAMP to the Regulatory (R) subunit of PKA facilitates the release of the Catalytic (C) subunit. According to our model, binding of cAMP triggers long range perturbations that propagate from the PBC to the R:C interface through both direct and indirect pathways. The indirect pathway involves two key relay sites located at the C-terminus of β2 (1163) and at the N-terminus of β3 (D170). D170 functions as an electrostatic switch that mediates the communication between the PBC and the helical subdomain, whereas 1163 controls the global unfolding. Hence, removal of cAMP uncouples the α- and β-subdomains by breaking the circuitry of cooperative interactions radiating from the PBC. The proposed model was further validated by the cAMP agonist Sp-cAMPS and the cAMP antagonist Rp-cAMPS. It was observed that Rp-cAMPS, in which the equatorial exocylic oxygen is replaced by sulphur, does not activate a necessary indirect allosteric pathway, while its diastereoisomer (Sp-cAMPS) with opposite phosphorus chirality behaves similarly to cAMP activating all allosteric pathways. Our data also showed that the cAMP-antagonist stabilizes a ternary inhibitory complex between the effector ligand and both the regulatory and the catalytic subunits of PKA. At this point it is still not understood how the proposed model of cAMP allostery is conserved in other cAMP binding proteins such as EPAC. EPAC is a multidomain guanine nucleotide exchange factor specific for small GTP-binding proteins and is directly activated by cAMP. We have probed how cAMP docks into the EPAC1 CBD and how its signal allosterically propagates from the cAMP binding site to the helical subdomain, which mediates the inhibitory interactions between the regulatory and catalytic regions of EPAC. Our comparative NMR investigation of cAMP signalling in PKA and EPAC revealed key functionally significant differences between these two systems that will facilitate the design of EPAC-selective therapeutics. / Thesis / Doctor of Philosophy (PhD)
2

New Insights into the Structure, Function and Evolution of TETR Family Transcriptional Regulators

Yu, Zhou 21 April 2010 (has links)
Antibiotic resistance is a worsening threat to human health. Increasing our understanding of the mechanisms causing this resistance will be of great benefit in designing methods to evade resistance and in developing new classes of antibiotics. In this thesis, I have used the TetR Family Transcriptional Regulators (TFRs), which constitute one of the largest antibiotic resistance regulator families, as a model system to study the structure, function and evolution of antibiotic resistance determinants. I performed a thorough examination of the variation and conservation seen in TFR sequences and structures using computational approaches. Through structure comparison, I have identified the most conserved features shared by the TFR family that are crucial for their stability and function. Based on my findings on conserved TFR structural features, a quantitative assay of binding affinity determination was developed. Through sequence comparison and a residue contact map method, I discovered the existence of a conserved residue network that correlates well with the known allostery pathway of TetR. This predicted allosteric communication network was experimentally tested in TtgR. I have also developed methods to identify TFR operator sequences through genomic comparisons and validated my prediction through experiments. In addition, I have developed an in vivo system that can be used to identify and characterize proteins that mediate resistance to almost any antibiotic. This system is simple, fast, and scalable for high-throughput applications, and could be used to discover a wide range of novel antibiotic resistance mechanisms. The principles that I applied to the TFR family could also be applied to other protein families.
3

New Insights into the Structure, Function and Evolution of TETR Family Transcriptional Regulators

Yu, Zhou 21 April 2010 (has links)
Antibiotic resistance is a worsening threat to human health. Increasing our understanding of the mechanisms causing this resistance will be of great benefit in designing methods to evade resistance and in developing new classes of antibiotics. In this thesis, I have used the TetR Family Transcriptional Regulators (TFRs), which constitute one of the largest antibiotic resistance regulator families, as a model system to study the structure, function and evolution of antibiotic resistance determinants. I performed a thorough examination of the variation and conservation seen in TFR sequences and structures using computational approaches. Through structure comparison, I have identified the most conserved features shared by the TFR family that are crucial for their stability and function. Based on my findings on conserved TFR structural features, a quantitative assay of binding affinity determination was developed. Through sequence comparison and a residue contact map method, I discovered the existence of a conserved residue network that correlates well with the known allostery pathway of TetR. This predicted allosteric communication network was experimentally tested in TtgR. I have also developed methods to identify TFR operator sequences through genomic comparisons and validated my prediction through experiments. In addition, I have developed an in vivo system that can be used to identify and characterize proteins that mediate resistance to almost any antibiotic. This system is simple, fast, and scalable for high-throughput applications, and could be used to discover a wide range of novel antibiotic resistance mechanisms. The principles that I applied to the TFR family could also be applied to other protein families.
4

MECHANISM OF CALCIUM DEPENDENT GATING OF BKCa CHANNELS: RELATING PROTEIN STRUCTURE TO FUNCTION

Krishnamoorthy, Gayathri 13 April 2006 (has links)
No description available.
5

Determinação da estrutura cristalográfica da enzima da Glucosamina-6-fosfato desaminase de E.coli K12 e seus complexos com ativador alostérico e inibidor / Crystal structure of enzyme glucosamine-6-phosphate deaminase de E. coli K12 and its complexes with allosteric activator and inhibitor

Fontes, Marcos Roberto de Mattos 07 August 1995 (has links)
A enzima Glucosamina-6-fosfato desaminase (GlcN6P desaminase) é envolvida na conversão reversível da D-glucosamina-6-fosfato (GlcN6P) em Fru6P e amônia, como parte do caminho metabólico de aminoaçúcares como fonte de energia celular. A enzima hexamérica (peso mol. 178200) exibe uma cooperatividade homotrópica intensa em direção à GlcN6P a qual é modulada alostericamente pelo ativador N-acetil-D-glucosamina 6-fosfato (GlcNAc6P). A GlcN6P desaminase foi cristalizada no grupo espacial R32, com parâmetros de rede a = b = 125.9 &#197 e c = 223.2 &#197 e um conjunto de dados à 2.1 &#197 de resolução foi coletado usando radiação de luz síncrotron (Horjales et ai., 1992). A procura no banco de dados de seqüências OWL não mostrou homologia significante com qualquer outra família de proteína, desta maneira a determinação da estrutura foi feita pela técnica de substituição isomórfica múltipla (MIR) a partir de dois derivados, um composto de platina, o K2PtCl4 e um complexo de mercúrio, o ácido mersálico. O mapa MIR a 3 &#197 de resolução mostrou contornos claros e utilizando técnicas de nivelamento de solvente (solvent flattening) estendeu-se as fases até 2.5 &#197. A enzima cristaliza-se com dois monômeros na unidade assimétrica. A densidade eletrônica final foi interpretada com o auxílio do programa gráfico \'O\', sendo possível determinar sem ambigüidade 230 dos 266 resíduos de cada monômero; a partir daí foram usados subseqüentes mapas de Fourier diferença para a localização de todos os outros resíduos. O refinamento do modelo foi feito utilizando o programa X-PLOR (Brünger, 1993), usando a rotina simulated annealing, obtendo o fator R final de 17.4% com 348 moléculas de água e quatro íons inorgânicos de fosfato. O enovelamento do monômero tem uma estrutura do tipo &#945/&#946 com uma folha-&#946 pregueada paralela central com sete fitas com topologia 4x, 1x, 1x, -3x, -1x, -1x, envolvida por ambos os lados por oito hélices-&#945 e uma hélice 310 com duas voltas. A sexta fita da folha-&#946 central tem um prolongamento no C-terminal que faz parte de uma segunda folha-&#946 antiparalela de três fitas com topologia 2, -1. O hexâmero tem uma simetria local 32, com dois trímeros empacotados frente-a-frente com uma rotação relativa de 15&#176 em tomo do eixo de ordem 3 e ligados por pontes salinas e algumas interações hidrofóbicas em tomo do eixo não cristalográfico de ordem 2. As moléculas de cada trímero formam um contato não usual de três resíduos Cis 219 próximo ao eixo de ordem três. Os complexos com ativador alostérico (GlcNAc6P) e inibidor competitivo (2-desoxi 2-amino glucitol 6-fosfato) foram co-cristalizados isomorficamente com a estrutura nativa. Os mapas Fourier diferença mostram claramente densidades para os ligantes, definindo sem ambigüidade o sítio ativo e alostérico. O refinamento dos complexos produziu a mesma conformação da proteína nativa, na margem de erro experimental. Os sítios alostéricos (seis) estão localizados na interface adjacente dos monômeros de cada trímero e os sítios ativos (ou catalíticos) no lado externo de cada monômero, no C-terminal da folha-&#946 central. O monômero tem uma topologia com enovelamento similar a um domínio de ligação de NAD, excluindo os segmentos de aminoácidos 1-35, 145-188 e 243-266. As estruturas dos complexos e da nativa estão em um estado alostérico R em concordância com o modelo MWC para um sistema do tipo K (Monod et al, 1965). Um mecanismo alostérico similar ao da GlcN6P desaminase é encontrado na enzima fosfofrutoquinase (Evans, 1981). Um mecanismo catalítico é proposto para a reação de isomerisação-desaminação da enzima GlcN6P desaminase a partir do mecanismo geral para aldose-cetona isomerases. / The enzyme Glucosamine-6-phosphate deaminase (GlcN6P deaminase) is involved in the reversible conversion of D-glucosamine-6-phosphate (GlcN6P) into Fru6P and ammonia. The hexameric enzyme (mol.wt.=178200) exhibits an intense homotropic co-operativity towards GlcN6P which is allosterically modulated by the activator N-acetyl-D-glucosamine 6-phosphate (GlcNAc6P). The GlcN6P deaminase was crystallized in space group R32, with cell parameters a=b= 125.9 &#197 and c = 223.2 &#197 and a native dataset was collected to 2.1 &#197 resolution at a synchrotron source (Horjales et al, 1992). A search of the OWL sequences database has shown no significant homology with any other known protein family. Therefore, the structure determination will have to be achieved through the Multiple Isomorphous Replacement technique from two isomorphous derivatives, a platinum compound K2PtCl4 and a mercury complex, mersalyl acid. The MIR map at 3 &#197 resolution showed clear molecular boundaries and solvent flattening techniques (Wang, 1985) were used to extend the phase set to 2.5 &#197. The final electron density map was interpreted with the aid of the graphic program \'O\'. The enzyme crystallizes with a dimmer in the asymmetric unit and 230 out of the total 266 residues of each crystallographically independent monomer could be unambiguously identified in the map. The remaining residues were located after subsequent difference Fourier maps. The refinement was made with program X-PLOR (Brunger, 1993), using the simulated annealing routine, obtained R=17.4 % with 348 water molecules and four inorganic phosphate ions. The monomer fold shows an &#945/&#946 structure with a central 7-stranded &#946-sheet with topology 4x, 1x, 1x, -3x, -1x, -1x, surrounded on both sides by eight &#945-helices and 2-turn 310 -helix. The sixth strand of the central &#946-sheet is common to a second 3-stranded anti-parallel &#946-sheet with topology 2, -1. The hexamer has local 32 symmetry, with two trimmers packed in a face-to-face arrangement with a relative rotation of 15&#176 around the 3-fold axis, and linked together by salt-bridge and some hydrophobic contacts. The molecules of each trimmer have extensive contacts and show an unusual feature of the three Cys219 residues closely clustered around the 3-fold axis. The complexes with allosteric activator (GlcNAc6P) and inhibitor (2-deoxy-2-amino glucitol 6-phosphate) were co-crystallized isomorphously with the native structure. The difference Fourier maps shows clear density for the ligands, unambiguously defining the active and allosteric sites. The complexes refinement produced the same conformation of the native, within experimental error. The allosteric sites are located at the interfaces of adjacent monomers from each trimer and the active sites (or catalytic) lie at the external side of each monomer, at the C-terminal end of the central parallel &#946-sheet. The monomer has a similar folding topology as a typical NAD binding domain, excluding the segments of aminoacids 135, 145-188 and 243-266. The native and complexes structures are at the allosteric state R concerted with MWC model for a K-system (Monod et al, 1965). A similar allosteric mechanism is found in the enzyme phosphofructokinase (Evans, 1981). A catalytic mechanism is proposed for the isomerisation-deamination reaction of the enzyme from general mechanism for aldo-keto isomerases.
6

Determinação da estrutura cristalográfica da enzima da Glucosamina-6-fosfato desaminase de E.coli K12 e seus complexos com ativador alostérico e inibidor / Crystal structure of enzyme glucosamine-6-phosphate deaminase de E. coli K12 and its complexes with allosteric activator and inhibitor

Marcos Roberto de Mattos Fontes 07 August 1995 (has links)
A enzima Glucosamina-6-fosfato desaminase (GlcN6P desaminase) é envolvida na conversão reversível da D-glucosamina-6-fosfato (GlcN6P) em Fru6P e amônia, como parte do caminho metabólico de aminoaçúcares como fonte de energia celular. A enzima hexamérica (peso mol. 178200) exibe uma cooperatividade homotrópica intensa em direção à GlcN6P a qual é modulada alostericamente pelo ativador N-acetil-D-glucosamina 6-fosfato (GlcNAc6P). A GlcN6P desaminase foi cristalizada no grupo espacial R32, com parâmetros de rede a = b = 125.9 &#197 e c = 223.2 &#197 e um conjunto de dados à 2.1 &#197 de resolução foi coletado usando radiação de luz síncrotron (Horjales et ai., 1992). A procura no banco de dados de seqüências OWL não mostrou homologia significante com qualquer outra família de proteína, desta maneira a determinação da estrutura foi feita pela técnica de substituição isomórfica múltipla (MIR) a partir de dois derivados, um composto de platina, o K2PtCl4 e um complexo de mercúrio, o ácido mersálico. O mapa MIR a 3 &#197 de resolução mostrou contornos claros e utilizando técnicas de nivelamento de solvente (solvent flattening) estendeu-se as fases até 2.5 &#197. A enzima cristaliza-se com dois monômeros na unidade assimétrica. A densidade eletrônica final foi interpretada com o auxílio do programa gráfico \'O\', sendo possível determinar sem ambigüidade 230 dos 266 resíduos de cada monômero; a partir daí foram usados subseqüentes mapas de Fourier diferença para a localização de todos os outros resíduos. O refinamento do modelo foi feito utilizando o programa X-PLOR (Brünger, 1993), usando a rotina simulated annealing, obtendo o fator R final de 17.4% com 348 moléculas de água e quatro íons inorgânicos de fosfato. O enovelamento do monômero tem uma estrutura do tipo &#945/&#946 com uma folha-&#946 pregueada paralela central com sete fitas com topologia 4x, 1x, 1x, -3x, -1x, -1x, envolvida por ambos os lados por oito hélices-&#945 e uma hélice 310 com duas voltas. A sexta fita da folha-&#946 central tem um prolongamento no C-terminal que faz parte de uma segunda folha-&#946 antiparalela de três fitas com topologia 2, -1. O hexâmero tem uma simetria local 32, com dois trímeros empacotados frente-a-frente com uma rotação relativa de 15&#176 em tomo do eixo de ordem 3 e ligados por pontes salinas e algumas interações hidrofóbicas em tomo do eixo não cristalográfico de ordem 2. As moléculas de cada trímero formam um contato não usual de três resíduos Cis 219 próximo ao eixo de ordem três. Os complexos com ativador alostérico (GlcNAc6P) e inibidor competitivo (2-desoxi 2-amino glucitol 6-fosfato) foram co-cristalizados isomorficamente com a estrutura nativa. Os mapas Fourier diferença mostram claramente densidades para os ligantes, definindo sem ambigüidade o sítio ativo e alostérico. O refinamento dos complexos produziu a mesma conformação da proteína nativa, na margem de erro experimental. Os sítios alostéricos (seis) estão localizados na interface adjacente dos monômeros de cada trímero e os sítios ativos (ou catalíticos) no lado externo de cada monômero, no C-terminal da folha-&#946 central. O monômero tem uma topologia com enovelamento similar a um domínio de ligação de NAD, excluindo os segmentos de aminoácidos 1-35, 145-188 e 243-266. As estruturas dos complexos e da nativa estão em um estado alostérico R em concordância com o modelo MWC para um sistema do tipo K (Monod et al, 1965). Um mecanismo alostérico similar ao da GlcN6P desaminase é encontrado na enzima fosfofrutoquinase (Evans, 1981). Um mecanismo catalítico é proposto para a reação de isomerisação-desaminação da enzima GlcN6P desaminase a partir do mecanismo geral para aldose-cetona isomerases. / The enzyme Glucosamine-6-phosphate deaminase (GlcN6P deaminase) is involved in the reversible conversion of D-glucosamine-6-phosphate (GlcN6P) into Fru6P and ammonia. The hexameric enzyme (mol.wt.=178200) exhibits an intense homotropic co-operativity towards GlcN6P which is allosterically modulated by the activator N-acetyl-D-glucosamine 6-phosphate (GlcNAc6P). The GlcN6P deaminase was crystallized in space group R32, with cell parameters a=b= 125.9 &#197 and c = 223.2 &#197 and a native dataset was collected to 2.1 &#197 resolution at a synchrotron source (Horjales et al, 1992). A search of the OWL sequences database has shown no significant homology with any other known protein family. Therefore, the structure determination will have to be achieved through the Multiple Isomorphous Replacement technique from two isomorphous derivatives, a platinum compound K2PtCl4 and a mercury complex, mersalyl acid. The MIR map at 3 &#197 resolution showed clear molecular boundaries and solvent flattening techniques (Wang, 1985) were used to extend the phase set to 2.5 &#197. The final electron density map was interpreted with the aid of the graphic program \'O\'. The enzyme crystallizes with a dimmer in the asymmetric unit and 230 out of the total 266 residues of each crystallographically independent monomer could be unambiguously identified in the map. The remaining residues were located after subsequent difference Fourier maps. The refinement was made with program X-PLOR (Brunger, 1993), using the simulated annealing routine, obtained R=17.4 % with 348 water molecules and four inorganic phosphate ions. The monomer fold shows an &#945/&#946 structure with a central 7-stranded &#946-sheet with topology 4x, 1x, 1x, -3x, -1x, -1x, surrounded on both sides by eight &#945-helices and 2-turn 310 -helix. The sixth strand of the central &#946-sheet is common to a second 3-stranded anti-parallel &#946-sheet with topology 2, -1. The hexamer has local 32 symmetry, with two trimmers packed in a face-to-face arrangement with a relative rotation of 15&#176 around the 3-fold axis, and linked together by salt-bridge and some hydrophobic contacts. The molecules of each trimmer have extensive contacts and show an unusual feature of the three Cys219 residues closely clustered around the 3-fold axis. The complexes with allosteric activator (GlcNAc6P) and inhibitor (2-deoxy-2-amino glucitol 6-phosphate) were co-crystallized isomorphously with the native structure. The difference Fourier maps shows clear density for the ligands, unambiguously defining the active and allosteric sites. The complexes refinement produced the same conformation of the native, within experimental error. The allosteric sites are located at the interfaces of adjacent monomers from each trimer and the active sites (or catalytic) lie at the external side of each monomer, at the C-terminal end of the central parallel &#946-sheet. The monomer has a similar folding topology as a typical NAD binding domain, excluding the segments of aminoacids 135, 145-188 and 243-266. The native and complexes structures are at the allosteric state R concerted with MWC model for a K-system (Monod et al, 1965). A similar allosteric mechanism is found in the enzyme phosphofructokinase (Evans, 1981). A catalytic mechanism is proposed for the isomerisation-deamination reaction of the enzyme from general mechanism for aldo-keto isomerases.

Page generated in 0.0772 seconds