• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 644
  • 291
  • 132
  • 127
  • 84
  • 41
  • 25
  • 13
  • 8
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 1726
  • 337
  • 288
  • 242
  • 199
  • 178
  • 174
  • 170
  • 158
  • 154
  • 152
  • 151
  • 150
  • 145
  • 144
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Factors affecting the grain structure during solidification

Flood, S. C. January 1985 (has links)
No description available.
22

The high temperature stability of aluminium/lithium based alloys containing copper and magnesium

Pridham, M. S. January 1986 (has links)
No description available.
23

Elastic constant and deformation studies on Li-Mg alloys

Siedersleben, M. E. January 1987 (has links)
No description available.
24

Mechanical properties of Nb-N, Nb-Zr and Nb-ZrOsub(2) single crystals

Botta Filho, W. J. January 1985 (has links)
No description available.
25

A small angle neutron scattering study of Fe-Cr-Al alloys

Pike, B. C. January 1981 (has links)
No description available.
26

Fabrication and Characterization of Nanowires

Phillips, Francis Randall 2010 August 1900 (has links)
The use of nanostructures has become very common throughout high-tech industries. In order to enhance the applicability of Shape Memory Alloys (SMAs) in systems such as Nano-Electromechanical Systems, the phase transformation behavior of SMA nanostructures should be explored. The primary focus of this work is on the fabrication of metallic nanowires and the characterization of the phase transformation of SMA nanowires. Various metallic nanowires are fabricated through the use of the mechanical pressure injection method. The mechanical pressure injection method is a template assisted nanowire fabrication method in which an anodized aluminum oxide (AAO) template is impregnated with liquid metal. The fabrication procedure of the AAO templates is analyzed in order to determine the effect of the various fabrication steps. Furthermore, metallic nanowires are embedded into polymeric nano bers as a means to incorporate nanowires within other nanostructures. The knowledge obtained through the analysis of the AAO template fabrication guides the fabrication of SMA nanowires of various diameters. The fabrication of SMA nanowires with di fferent diameters is accomplished through the fabrication of AAO templates of varying diameters. The phase transformation behavior of the fabricated SMA nanowires is characterized through transmission electron microscopy. By analyzing the fabricated SMA nanowires, it is found that none of the fabricated SMA nanowires exhibit a size eff ect on the phase transformation. The lack of a size e ffect on the phase transition of SMA nanowires is contrary to the results for SMA nanograins, nanocrystals, and thin films, which all exhibit a size eff ect on the phase transformation. The lack of a size eff ect is further studied through molecular dynamic simulations. These simulations show that free-standing metallic nanowires will exhibit a phase transformation when their diameters are sufficiently small. Furthermore, the application of a constraint on metallic nanowires will inhibit the phase transformation shown for unconstrained metallic nanowires. Therefore, it is concluded that free-standing SMA nanowires will exhibit a phase transformation throughout the nanoscale, but constrained SMA nanowires will reach a critical size below which the phase transformation is inhibited.
27

Synthesis and Characterization of Alkanethiolate and Alkanecarboxylate Self-Assembled Monolayers on Gold-Silver Alloy Nanoparticles

Liou, Yin-Cian 22 June 2007 (has links)
We prepare a series of gold-silver alloy nanoparticles with different Au/Ag mole ratio. The UV/Vis absorption spectra of nanoparticle solutions exhibited one surface plasmon resonance absorption band and the surface plasmon absorption band of the gold-silver alloy nanoparticles is blue-shifted with increase the Ag content. Finally, we produced the nanoparticles capping with alkanethiolate and alkanecarboxylate via place-exchange reaction. The nanoparticles have been characterized by ICP-MS, TEM, 13C-NMR, FT-IR, UV-Vis absorption spectroscopy. We suggest that the carboxylate group is coordinated to the Ag ion as a bridging bidentate.
28

MICROSTRUCTURAL CHARACTERIZATION AND MECHANICAL PROPERTIES OF EXCEL ALLOY PRESSURE TUBE MATERIAL

Sattari, MOHAMMAD 28 August 2012 (has links)
Microstructural characterization and mechanical properties of Excel (Zr-3.5%Sn-0.8%Mo-0.8%Nb), a dual phase αZr-hcp and βZr-bcc pressure tube material, is discussed in the current study which is presented in manuscript format. Chapter 3 discusses phase transformation temperatures using different techniques such as quantitative metallography, differential scanning calorimetry (DSC), and electrical resistivity. It was found that the αZr → αZr+βZr and αZr+βZr → βZr transformation temperatures are in the range of 600-690°C and 960-970°C respectively. Also it was observed that upon quenching from temperatures below ~860°C the martensitic transformation of βZr to –hcp is halted and instead the microstructure transforms into retained βZr with ω hexagonal precipitates inside βZr grains. Chapter 4 deals with aging response of Excel alloy. Precipitation hardening was observed in samples water-quenched from high in the αZr+βZr or βZr regions followed by aging. The optimum aging conditions were found to be 450°C for 1 hour. Transmission electron microscopy (TEM) showed dispersion of fine precipitates (~10nm) inside the martensitic phase. Energy dispersive X-ray spectroscopy (EDS) showed the chemical composition of precipitates to be Zr-30wt%Mo-25wt%Nb-2wt%Fe. Electron crystallography using whole pattern symmetry of the convergent beam electron diffraction (CBED) patterns together with selected area diffraction (SAD) polycrystalline ring patterns, suggests the -6m2 point group for the precipitates belonging to hexagonal crystal structure, with a= 2.936 Å and c=4.481 Å, i.e. c/a =1.526. Crystallographic texture and high temperature tensile properties as well as creep-rupture properties of different microstructures are discussed in Chapter 5. Texture analysis showed that solution treatment high in the αZr+βZr or βZr regions followed by water quenching or air cooling results in a more random texture compared to typical pressure tube texture. Variant selection was observed upon water quenching while partial memory effect and some transformation texture with variant selection was observed in the air-cooled sample. The results of creep-rupture tests suggest that fully martensitic and aged microstructure has better creep properties at high stress levels (>700 MPa) while the microstructure from air cooling from high in the αZr+βZr region is less sensitive to stress and shows better creep properties compared to the as-received annealed microstructure at lower stresses (<560 MPa). / Thesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2012-08-23 16:22:45.395
29

Corrosion characteristics of alloyed white irons

Shoaee, Mohammad Saeed 12 1900 (has links)
No description available.
30

Effect of Texture on Formability and Mechanical Anisotropy of a Severe Plastically Deformed Magnesium Alloy

Modarres Razavi, Sonia 2011 December 1900 (has links)
Magnesium and its alloys have been considered as alternatives to aluminum alloys and steels for structural applications in automotive and aerospace applications due to their superior specific strength and light-weight. However, they have hexagonal-close packed (hcp) structure, and thus have a small number of deformation systems resulting in low ductility and formability near room temperature, anisotropic thermo-mechanical response and strong deformation textures. The aim of this work is to investigate experimentally the effect of crystallographic texture generated during severe plastic deformation (SPD), on the subsequent formability and mechanical flow anisotropy in AZ31B Mg alloy. The proper control of grain size and texture through SPD is expected to result in better low temperature formability and better control of mechanical flow anisotropy. AZ31B Mg alloy has been successfully processed using equal channel angular extrusion (ECAE) following different processing routes, multiple passes, and different processing temperatures, in order to obtain samples with a wide variety of grain sizes, ranging from ~370 nm up to few microns, and crystallographic textures. Low temperature processing of the AZ31B Mg alloy was successful after initial high temperature processing. Smaller grain sizes were achieved using the temperature step-down method leading to incremental reduction in grain size at each ECAE pass. The temperature step-down method was utilized to develop hybrid ECAE routes to obtain specific crystallographic textures. Optimized hybrid ECAE routes were developed which resulted in a high strength/high ductility material with the average grain size of ~370 nm. The ECAE processed alloy showed a high tensile yield strength of ~380 MPa that has never been reported so far in AZ31 ingot metallurgy Mg alloys. The influence of grain size on the critical stress for the activation of individual deformation mechanisms was also investigated by systematically controlling the texture and grain size, and assuming the activation of mainly a single deformation mechanism through the careful selection of the loading direction on the processed samples. It was revealed that the Hall-Petch slope for the basal slip was much smaller than those of prismatic slip and tensile twinning.

Page generated in 0.03 seconds