Spelling suggestions: "subject:"allylic amination"" "subject:"allylics amination""
1 |
Beyond asymmetric allylic amination: exploring the chemistry of rhodium-catalyzed reactions of allylic trichloroacetimidates in the synthesis of nitrogen and 1,2-diamine heterocyclic compoundsMwenda, Edward 01 May 2018 (has links)
Chiral amines are ubiquitous functionalities found in the architecture of the natural world and have been embedded into materials, catalysts, pharmaceuticals, agrochemicals, and bioactive natural products. However, limited approaches are accessible for the construction of an enantioenriched tertiary or quaternary-containing amine. This thesis describes the development of new methodologies for the synthesis of 7-membered nitrogen-containing heterocycle and 1,2-diamine compounds.
Chapter one describes the application of dynamic kinetic asymmetric amination (DYKAT) of branched allylic acetimidates in the synthesis of 2-alkyldihydrobenzoazepin-5-ones. These 7-membered-ring aza-ketones are generated in good yield with high enantiomeric excess through sequential rhodium-catalyzed allylic amination with 2-amino aryl aldehydes followed by intramolecular olefin hydroacylation of the resulting alkenals. This two-step procedure is efficient, straightforward and convenient for the enantioselective preparation of these ring systems.
In Chapter two, we further extended the methodology towards the allylic amination of racemic secondary and tertiary allylic trichloroacetimidates possessing β-nitrogen substituents, and proximal nitrogen-containing heterocycles, using the DYKAT transformation to provide branched allylic 1,2-diamines with high enantioselectivity. The catalytic system is versatile in the synthesis of 1,2-diamines possessing two contiguous stereocenters, with excellent diastereoselectivity. Additionally, the nitrogen-containing heterocycles suppress competing vinyl azirdine formation, allowing for the high enantioselective syntheses of 1,2-diamines possessing tertiary and quaternary centers. Chapter three gives a very brief outlook on our efforts in rhodium-catalyzed amination strategy in providing access to a variety of enantiopure α-fluoromethylated allylic amines.
|
2 |
Mechanisms of Platinum Group Metal Catalysis Investigated by Experimental and Theoretical MethodsZimmer-De Iuliis, Marco 15 September 2011 (has links)
The results of kinetic isotope determination and computational studies on Noyori-type catalytic systems for the hydrogenation of ketones are presented. The catalysts examined include RuH2(NHCMe2CMe2NH2)(R-binap) and RuH(NHCMe2CMe2NH2)(PPh3)2. These complexes are active catalysts for ketone hydrogenation in benzene without addition of an external base. The kinetic isotope effect (KIE) for catalysis by RuH2(NHCMe2CMe2NH2)(R-binap) was determined to be 2.0 ± (0.1). The calculated KIE for the model system RuH(NHCH2CH2NH2)(PH3)2 was 1.3, which is smaller than the experimentally observed value but does not include tunneling effects.
The complex OsH(NHCMe2CMe2NH2)(PPh3)2 is known to display autocatalytic behaviour when it catalyzes the hydrogenation of acetophenone in benzene. Pseudo first-order reaction conditions are obtained via addition of the product alcohol at the beginning of each kinetic experiment. The KIE determined using various combinations of deuterium-labeled gas, alcohol and ketone was found to be 1.1 ± (0.2). DFT calculations were used to explore the effect of the alcohol and the KIE. An induction period is observed at the start of the hydrogenation that is attributed to the formation of an alkoxide complex. A novel, diamine-orchestrated hydrogen-bonding network is proposed based on DFT calculations to explain how the alkoxide is converted back to the active catalyst.
The tetradentate complexes trans-RuHCl[PPh2(ortho-C6H4)CH2NHCH2)]2 and RuHCl[PPh2(ortho-C6H4)CH2NHCMe2)]2 are known to be catalysts for the hydrogenation of acetophenone and benzonitrile in toluene when activated by KOtBu/KH. DFT studies were performed and a mechanism is proposed. The calculated rate limiting step for acetone hydrogenation was found to be heterolytic splitting of dihydrogen, which agrees well with experiment. The novel outer-sphere sequential hydrogenation of a CN triple bond and then a C=N double bond is proposed.
A mechanism is proposed, which is supported by DFT studies, to explain the selectivity observed in the nucleophilic attack of amines or aziridines on palladium -prenyl phosphines complexes. Calculations on based on a palladium complex with two phosphorus donor ligands indicated that the observed selectivity would not be produced. Using two new model intermediates with either THF or aziridine substituted for a phosphine ligand trans to the unhindered side of the prenyl ligand did predict the experimentally observed selectivity.
|
3 |
Mechanisms of Platinum Group Metal Catalysis Investigated by Experimental and Theoretical MethodsZimmer-De Iuliis, Marco 15 September 2011 (has links)
The results of kinetic isotope determination and computational studies on Noyori-type catalytic systems for the hydrogenation of ketones are presented. The catalysts examined include RuH2(NHCMe2CMe2NH2)(R-binap) and RuH(NHCMe2CMe2NH2)(PPh3)2. These complexes are active catalysts for ketone hydrogenation in benzene without addition of an external base. The kinetic isotope effect (KIE) for catalysis by RuH2(NHCMe2CMe2NH2)(R-binap) was determined to be 2.0 ± (0.1). The calculated KIE for the model system RuH(NHCH2CH2NH2)(PH3)2 was 1.3, which is smaller than the experimentally observed value but does not include tunneling effects.
The complex OsH(NHCMe2CMe2NH2)(PPh3)2 is known to display autocatalytic behaviour when it catalyzes the hydrogenation of acetophenone in benzene. Pseudo first-order reaction conditions are obtained via addition of the product alcohol at the beginning of each kinetic experiment. The KIE determined using various combinations of deuterium-labeled gas, alcohol and ketone was found to be 1.1 ± (0.2). DFT calculations were used to explore the effect of the alcohol and the KIE. An induction period is observed at the start of the hydrogenation that is attributed to the formation of an alkoxide complex. A novel, diamine-orchestrated hydrogen-bonding network is proposed based on DFT calculations to explain how the alkoxide is converted back to the active catalyst.
The tetradentate complexes trans-RuHCl[PPh2(ortho-C6H4)CH2NHCH2)]2 and RuHCl[PPh2(ortho-C6H4)CH2NHCMe2)]2 are known to be catalysts for the hydrogenation of acetophenone and benzonitrile in toluene when activated by KOtBu/KH. DFT studies were performed and a mechanism is proposed. The calculated rate limiting step for acetone hydrogenation was found to be heterolytic splitting of dihydrogen, which agrees well with experiment. The novel outer-sphere sequential hydrogenation of a CN triple bond and then a C=N double bond is proposed.
A mechanism is proposed, which is supported by DFT studies, to explain the selectivity observed in the nucleophilic attack of amines or aziridines on palladium -prenyl phosphines complexes. Calculations on based on a palladium complex with two phosphorus donor ligands indicated that the observed selectivity would not be produced. Using two new model intermediates with either THF or aziridine substituted for a phosphine ligand trans to the unhindered side of the prenyl ligand did predict the experimentally observed selectivity.
|
4 |
Organic Synthesis using Bimetallic CatalysisEnce, Chloe Christine 23 April 2020 (has links)
Bimetallic Catalysis is an emerging field of study that uses two metals to cooperatively perform organic transformations. These metals can serve to activate or bind substrates in order to increase the rate and selectivity of reactions. This work first describes the synthesis and utilization of six new chiral, titanium-containing phosphinoamide ligands. These Lewis acidic ligands withdraw electron density from an active palladium center to induce chirality and increase the rate of allylic amination of hindered, secondary N-alkyl amines. X-ray quality crystals were grown for each ligand and completed the allylic amination of hindered secondary amines in minutes whereas other non-titanium-containing ligands produced trace product. Although enantioselectivity was low initially, through a dynamic kinetic resolution enantioselectivity was increased over time, reaching 53% enantioselectivity. The second type of bimetallic catalysis discussed is dinuclear Pd(II) and Pd(I) catalysis. These dimers were built on a 2-phosphinoamide ligand scaffold and present interesting molecular structure and unique reactivity. These dimers were found to perform tandem arylketone coupling to produce disubstituted naphthalene products under oxidative conditions. It is proposed that the Pd(II) dimer undergoes oxidative addition to produce a Pd(III) dimer which subsequently produces an aryl-ketone intermediate. This process is made possible by the cooperativity of the two palladium centers which enable the formation of a Pd(III) dimer, circumventing the need for the high energy Pd(IV) oxidation state. Oxidative conditions then allows coupling and cyclization of a second ketone to form the naphthalene product.
|
5 |
Pd触媒による分子内アリル位アミノ化および分子内C-H官能基化反応の開発末次, 聖 23 March 2017 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(薬科学) / 乙第13086号 / 論薬科博第2号 / 新制||薬科||9(附属図書館) / (主査)教授 竹本 佳司, 教授 高須 清誠, 教授 川端 猛夫 / 学位規則第4条第2項該当 / Doctor of Pharmaceutical Sciences / Kyoto University / DFAM
|
6 |
Catalysis and materials development in organic chemistryBerro, Adam Joseph 2009 August 1900 (has links)
The field of organic chemistry is divided into many subfields, which include polymer design and synthesis, transition metal catalysis and organocatalysis among a variety of others. Challenges in polymer design and synthesis can be highlighted pointedly in the use of photoresists for lithographic processing. Recent challenges in development of shorter wavelength sources has led to the need to develop new photoresist materials that can be exposed twice without any development steps in between. Two methods for addressing double exposure materials will be presented. Additionally, the areas of catalysis, whether transition metal or organic in nature, are important methods in organic synthesis. The mechanism of the addition of Gilman reagents to enones has been the subject of debate, and efforts to elucidate this mechanism will be presented. Finally, organocatalysis has expanded its scope into a variety of reactions previously only conducted with transition metal catalysts. Work towards an enantioselective allylic amination reaction using organocatalysis as well as absolute stereochemistry of the product will be explored. / text
|
Page generated in 0.1095 seconds