• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regressão não paramétrica com processos estacionários alpha-mixing via ondaletas / Nonparametric regression with stationary mixing processes.

Gomez Gomez, Luz Marina 22 January 2013 (has links)
Nesta tese consideramos um modelo de regressão não paramétrica, quando a variável explicativa e um processo estritamente estacionário e alpha-mixing. São estudadas as condições sobre o processo Xt e sua estrutura de dependência, assim como do domínio da função f a ser estimada. Também são feitas as adaptações necessárias aos procedimentos para obter as taxas de convergência do risco para a norma Lp, no caso de ondaletas deformadas. Em relação às ondaletas adaptativas de Haar, obtêm-se as taxas de convergência do risco do estimador proposto. Mediante estudos de simulação, e avaliado o desempenho dos procedimentos propostos quando aplicados a amostras finitas sob diferentes níveis de perturbação do sinal e diferentes tamanhos da amostra. Também são feitas aplicações a dados reais. / In this thesis we consider a nonparametric regression model, when the exploratory variables are alpha-mixing stationary processes. We obtain convergence rates for risk for Lp norm, via warped wavelets, under suitable regularity conditions. For estimation using design adapted Haar wavelets we obtain convergence rates for the risk of the proposed estimator. The performance of the estimators are assessed via simulation studies with dierent sample sizes and dierent signal-to-noise ratios. Applications to real data are also given.
2

Regressão não paramétrica com processos estacionários alpha-mixing via ondaletas / Nonparametric regression with stationary mixing processes.

Luz Marina Gomez Gomez 22 January 2013 (has links)
Nesta tese consideramos um modelo de regressão não paramétrica, quando a variável explicativa e um processo estritamente estacionário e alpha-mixing. São estudadas as condições sobre o processo Xt e sua estrutura de dependência, assim como do domínio da função f a ser estimada. Também são feitas as adaptações necessárias aos procedimentos para obter as taxas de convergência do risco para a norma Lp, no caso de ondaletas deformadas. Em relação às ondaletas adaptativas de Haar, obtêm-se as taxas de convergência do risco do estimador proposto. Mediante estudos de simulação, e avaliado o desempenho dos procedimentos propostos quando aplicados a amostras finitas sob diferentes níveis de perturbação do sinal e diferentes tamanhos da amostra. Também são feitas aplicações a dados reais. / In this thesis we consider a nonparametric regression model, when the exploratory variables are alpha-mixing stationary processes. We obtain convergence rates for risk for Lp norm, via warped wavelets, under suitable regularity conditions. For estimation using design adapted Haar wavelets we obtain convergence rates for the risk of the proposed estimator. The performance of the estimators are assessed via simulation studies with dierent sample sizes and dierent signal-to-noise ratios. Applications to real data are also given.
3

Estimação de cópulas via ondaletas / Copula estimation through wavelets

Silva, Francyelle de Lima e 03 October 2014 (has links)
Cópulas tem se tornado uma importante ferramenta para descrever e analisar a estrutura de dependência entre variáveis aleatórias e processos estocásticos. Recentemente, surgiram alguns métodos de estimação não paramétricos, utilizando kernels e ondaletas. Neste contexto, sabendo que cópulas podem ser escritas como expansão em ondaletas, foi proposto um estimador não paramétrico via ondaletas para a função cópula para dados independentes e de séries temporais, considerando processos alfa-mixing. Este estimador tem como característica principal estimar diretamente a função cópula, sem fazer suposição alguma sobre a distribuição dos dados e sem ajustes prévios de modelos ARMA - GARCH, como é feito em ajuste paramétrico para cópulas. Foram calculadas taxas de convergência para o estimador proposto em ambos os casos, mostrando sua consistência. Foram feitos também alguns estudos de simulação, além de aplicações a dados reais. / Copulas are important tools for describing the dependence structure between random variables and stochastic processes. Recently some nonparametric estimation procedures have appeared, using kernels and wavelets. In this context, knowing that a copula function can be expanded in a wavelet basis, we have proposed a nonparametric copula estimation procedure through wavelets for independent data and times series under alpha-mixing condition. The main feature of this estimator is the copula function estimation without assumptions about the data distribution and without ARMA - GARCH modeling, like in parametric copula estimation. Convergence rates for the estimator were computed, showing the estimator consistency. Some simulation studies were made, as well as analysis of real data sets.
4

Estimação de cópulas via ondaletas / Copula estimation through wavelets

Francyelle de Lima e Silva 03 October 2014 (has links)
Cópulas tem se tornado uma importante ferramenta para descrever e analisar a estrutura de dependência entre variáveis aleatórias e processos estocásticos. Recentemente, surgiram alguns métodos de estimação não paramétricos, utilizando kernels e ondaletas. Neste contexto, sabendo que cópulas podem ser escritas como expansão em ondaletas, foi proposto um estimador não paramétrico via ondaletas para a função cópula para dados independentes e de séries temporais, considerando processos alfa-mixing. Este estimador tem como característica principal estimar diretamente a função cópula, sem fazer suposição alguma sobre a distribuição dos dados e sem ajustes prévios de modelos ARMA - GARCH, como é feito em ajuste paramétrico para cópulas. Foram calculadas taxas de convergência para o estimador proposto em ambos os casos, mostrando sua consistência. Foram feitos também alguns estudos de simulação, além de aplicações a dados reais. / Copulas are important tools for describing the dependence structure between random variables and stochastic processes. Recently some nonparametric estimation procedures have appeared, using kernels and wavelets. In this context, knowing that a copula function can be expanded in a wavelet basis, we have proposed a nonparametric copula estimation procedure through wavelets for independent data and times series under alpha-mixing condition. The main feature of this estimator is the copula function estimation without assumptions about the data distribution and without ARMA - GARCH modeling, like in parametric copula estimation. Convergence rates for the estimator were computed, showing the estimator consistency. Some simulation studies were made, as well as analysis of real data sets.
5

Flexibilnost, robustnost a nespojitost v neparamerických regresních postupech / Flexibility, Robustness and Discontinuities in Nonparametric Regression Approaches

Maciak, Matúš January 2011 (has links)
Thesis title: Flexibility, Robustness and Discontinuity in Nonparametric Regression Approaches Author: Mgr. Matúš Maciak, M.Sc. Department: Department of Probability and Mathematical Statistics, Charles University in Prague Supervisor: Prof. RNDr. Marie Hušková, DrSc. huskova@karlin.mff.cuni.cz Abstract: In this thesis we focus on local polynomial estimation approaches of an unknown regression function while taking into account also some robust issues like a presence of outlying observa- tions or heavy-tailed distributions of random errors as well. We will discuss the most common method used for such settings, so called local polynomial M-smoothers and we will present the main statistical properties and asymptotic inference for this method. The M-smoothers method is especially suitable for such cases because of its natural robust flavour, which can nicely deal with outliers as well as heavy-tailed distributed random errors. Another important quality we will focus in this thesis on is a discontinuity issue where we allow for sudden changes (discontinuity points) in the unknown regression function or its derivatives respectively. We will propose a discontinuity model with different variability structures for both independent and dependent random errors while the discontinuity points will be treated in a...
6

Sur l'estimation non paramétrique de la densité et du mode dans les modèles de données incomplètes et associées / Non parametric estimation of the density and mode for incompletes and associated data

Ferrani, Yacine 23 November 2014 (has links)
Cette thèse porte sur l'étude des propriétés asymptotiques d'un estimateur non paramétrique de la densité de type Parzen-Rosenblatt, sous un modèle de données censurées à droite, vérifiant une structure de dépendance de type associé. Dans ce cadre, nous rappelons d'abord les résultats existants, avec détails, dans les cas i.i.d. et fortement mélangeant (α-mélange). Sous des conditions de régularité classiques, il est établi que la vitesse de coonvergence uniforme presque sûre de l'estimateur étudié, est optimale. Dans la partie dédiée aux résultats de cette thèse, deux résultats principaux et originaux sont présentés : le premier résultat concerne la convergence uniforme presque sûre de l'estimateur étudié sous l'hypothèse d'association. L'outil principal ayant permis l'obtention de la vitesse optimale est l'adaptation du Théorème de Doukhan et Neumann (2007), dans l'étude du terme des fluctuations (partie aléatoire) de l'écart entre l'estimateur considéré et le paramètre étudié (densité). Comme application, la convergence presque sûre de l'estimateur non paramétrique du mode est établie. Les résultats obtenus ont fait l'objet d'un article accepté pour publication dans Communications in Statistics-Theory and Methods ; Le deuxième résultat établit la normalité asymptotique de l'estimateur étudié sous le même modèle et constitute ainsi une extension au cas censuré, du résultat obtenu par Roussas (2000). Ce résultat est soumis pour publication. / This thesis deals with the study of asymptotic properties of e kernel (Parzen-Rosenblatt) density estimate under associated and censored model. In this setting, we first recall with details the existing results, studied in both i.i.d. and strong mixing condition (α-mixing) cases. Under mild standard conditions, it is established that the strong uniform almost sure convergence rate, is optimal. In the part dedicated to the results of this thesis, two main and original stated results are presented : the first result concerns the strong uniform consistency rate of the studied estimator under association hypothesis. The main tool having permitted to achieve the optimal speed, is the adaptation of the Theorem due to Doukhan and Neumann (2007), in studying the term of fluctuations (random part) of the gap between the considered estimator and the studied parameter (density). As an application, the almost sure convergence of the kernel mode estimator is established. The stated results have been accepted for publication in Communications in Statistics-Theory & Methods ; The second result establishes the asymptotic normality of the estimator studied under the same model and then, constitute an extension to the censored case, the result stated by Roussas (2000). This result is submitted for publication.

Page generated in 0.06 seconds