• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2212
  • 1086
  • 451
  • 229
  • 191
  • 171
  • 107
  • 61
  • 58
  • 31
  • 30
  • 29
  • 26
  • 25
  • 20
  • Tagged with
  • 5592
  • 675
  • 630
  • 566
  • 414
  • 396
  • 379
  • 356
  • 355
  • 348
  • 320
  • 306
  • 284
  • 277
  • 274
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Photovoltaic Module Performance and Thermal Characterizations: Data Collection and Automation of Data Processing

January 2011 (has links)
abstract: The photovoltaic (PV) modules are primarily characterized for their performance with respect to incident irradiance and operating temperature. This work deals with data collection and automation of data processing for the performance and thermal characterizations of PV modules. This is a two-part thesis: The primary part (part-1) deals with the software automation to generate performance matrix as per IEC 61853-1 standard using MPPT (maximum power point tracking) data at the module or system level; the secondary part (part-2) deals with the software automation to predict temperature of rooftop PV modules using the thermal model coefficients generated in the previous studies of the Photovoltaic Reliability Laboratory (PRL). Part 1: The IEC 61853-1 standard published in January 2011 specifies the generation of a target performance matrix of photovoltaic (PV) modules at various temperatures and irradiance levels. In a conventional method, this target matrix is generated using all the data points of several measured I-V curves and the translation procedures defined in IEC 60891 standard. In the proposed method, the target matrix is generated using only three commonly field measured parameters: Module temperature, Incident irradiance and MPPT (Maximum Peak Power Tracking) value. These parameters are loaded into the programmed Excel file and with a click of a button, IEC 61853-1 specified Pmppt matrix is displayed on the screen in about thirty seconds. Part 2: In a previous study at PRL, an extensive thermal model to predict operating temperature of rooftop PV modules was developed with a large number of empirical monthly coefficients for ambient temperature, irradiance and wind speed. Considering that there is large number of coefficients for each air gap of rooftop modules, it became necessary to automate the entire data processing to predict the temperature of rooftop PV modules at different air gaps. This part of the work was dedicated to automatically predict the temperature of rooftop modules at different air gaps for any month in a year just using only four input parameters: Month, Irradiance, Ambient temperature and Wind speed. / Dissertation/Thesis / M.S.Tech Electrical Engineering 2011
22

Building Applied Photovoltaic Arrays: Side-by-Side Array Comparison With and Without Fan Cooling

January 2011 (has links)
abstract: Building Applied Photovoltaics (BAPV) form an essential part of today's solar economy. This thesis is an effort to compare and understand the effect of fan cooling on the temperature of rooftop photovoltaic (PV) modules by comparing two side-by-side arrays (test array and control array) under identical ambient conditions of irradiance, air temperature, wind speed and wind direction. The lower operating temperature of PV modules due to fan operation mitigates array non uniformity and improves on performance. A crystalline silicon (c-Si) PV module has a light to electrical conversion efficiency of 14-20%. So on a cool sunny day with incident solar irradiance of 1000 W/m2, a PV module with 15% efficiency, will produce about only 150 watts. The rest of the energy is primarily lost in the form of heat. Heat extraction methods for BAPV systems may become increasingly higher in demand as the hot stagnant air underneath the array can be extracted to improve the array efficiency and the extracted low-temperature heat can also be used for residential space heating and water heating. Poly c-Si modules experience a negative temperature coefficient of power at about -0.5% /o C. A typical poly c-Si module would experience power loss due to elevation in temperature, which may be in the range of 25 to 30% for desert conditions such as that of Mesa, Arizona. This thesis investigates the effect of fan cooling on the previously developed thermal models at Arizona State University and on the performance of PV modules/arrays. Ambient conditions are continuously monitored and collected to calculate module temperature using the thermal model and to compare with actually measured temperature of individual modules. Including baseline analysis, the thesis has also looked into the effect of fan on the test array in three stages of 14 continuous days each. Multiple Thermal models are developed in order to identify the effect of fan cooling on performance and temperature uniformity. Although the fan did not prove to have much significant cooling effect on the system, but when combined with wind blocks it helped improve the thermal mismatch both under low and high wind speed conditions. / Dissertation/Thesis / M.S.Tech Engineering 2011
23

Indoor Soiling Method and Outdoor Statistical Risk Analysis of Photovoltaic Power Plants

January 2015 (has links)
abstract: This is a two-part thesis. Part 1 presents an approach for working towards the development of a standardized artificial soiling method for laminated photovoltaic (PV) cells or mini-modules. Construction of an artificial chamber to maintain controlled environmental conditions and components/chemicals used in artificial soil formulation is briefly explained. Both poly-Si mini-modules and a single cell mono-Si coupons were soiled and characterization tests such as I-V, reflectance and quantum efficiency (QE) were carried out on both soiled, and cleaned coupons. From the results obtained, poly-Si mini-modules proved to be a good measure of soil uniformity, as any non-uniformity present would not result in a smooth curve during I-V measurements. The challenges faced while executing reflectance and QE characterization tests on poly-Si due to smaller size cells was eliminated on the mono-Si coupons with large cells to obtain highly repeatable measurements. This study indicates that the reflectance measurements between 600-700 nm wavelengths can be used as a direct measure of soil density on the modules. Part 2 determines the most dominant failure modes of field aged PV modules using experimental data obtained in the field and statistical analysis, FMECA (Failure Mode, Effect, and Criticality Analysis). The failure and degradation modes of about 744 poly-Si glass/polymer frameless modules fielded for 18 years under the cold-dry climate of New York was evaluated. Defect chart, degradation rates (both string and module levels) and safety map were generated using the field measured data. A statistical reliability tool, FMECA that uses Risk Priority Number (RPN) is used to determine the dominant failure or degradation modes in the strings and modules by means of ranking and prioritizing the modes. This study on PV power plants considers all the failure and degradation modes from both safety and performance perspectives. The indoor and outdoor soiling studies were jointly performed by two Masters Students, Sravanthi Boppana and Vidyashree Rajasekar. This thesis presents the indoor soiling study, whereas the other thesis presents the outdoor soiling study. Similarly, the statistical risk analyses of two power plants (model J and model JVA) were jointly performed by these two Masters students. Both power plants are located at the same cold-dry climate, but one power plant carries framed modules and the other carries frameless modules. This thesis presents the results obtained on the frameless modules. / Dissertation/Thesis / Masters Thesis Engineering 2015
24

Diffuse Radiation Calculation Method

January 2016 (has links)
abstract: Measuring and estimating solar resource availability is critical for assessing new sites for solar energy generation. This includes beam radiation, diffuse radiation, and total incident radiation. Total incident radiation is pertinent to solar photovoltaic (PV) output and low-temperature solar thermal applications whereas beam radiation is used for concentrating solar power (CSP). Global horizontal insolation (GHI) data are most commonly available of any solar radiation measurement, yet these data cannot be directly applied to solar power generator estimation because solar PV panels and solar CSP collectors are not parallel to the earth’s surface. In absence of additional measured data, GHI data may be broken down into its constituent parts—diffuse radiation and beam radiation—using statistical techniques that incorporate explanatory variables such as the clearness index. This study provides a suite of methods and regression models to estimate diffuse radiation as a function of various explanatory variables using both piecewise and continuous fits. Regression analyses using the clearness index are completed for seven locations in the United States and four locations in other regions of the world. The multi-site analysis indicates that models developed using training data for a single location perform best in that location, yet general models can be created that perform reasonably well across any locality and then applied to estimate solar resource availability in new locations around the world. Results from the global and site-specific models perform better than the existing models in literature and indicate that models perform different in different sky conditions e.g. clear or cloudy sky. Results also show that continuous models perform equivalent or better than the piecewise models. Newly generated piecewise models showed improvement over some intervals in the clearness index. A combination of fits from this study and existing literature was used to improve overall performance of modeling techniques used in diffuse radiation estimation. Germany was selected for more detailed studies of a single case study using the clearness index, ambient temperature, relative humidity, and absolute humidity as explanatory variables. Clearness index is the most important variable for diffuse radiation calculation whereas the relative humidity and the temperature are the secondary variable for improving calculation. Absolute humidity plays similar role as temperature in improving the calculation on the other hand relative humidity improves it very slightly over the absolute humidity and temperature. / Dissertation/Thesis / Masters Thesis Engineering 2016
25

Battery Performance and Electrode Corrosion

January 2013 (has links)
abstract: Battery performance has been studied at different temperature, C rate. Different types of batteries have been used. Capacity and impedance are two factors, which are focused in the thesis. To evaluate battery performance and battery conditions, the SOC (state of charge) determination methods have been studied in the thesis. There are two types of batteries divided in three groups: group I. Ni-Cd battery (2V, 8Ah); group II. Lead-acid battery (2V, 8Ah); and group III. Lead-acid battery (2V, 25Ah). The impedance testing is using electrochemical impedance spectroscopy methods. AC impedance method has been used to test different state of charge (100%, 80%, 60%, 40%, 20%). For the corrosion part, the corrosion rate of metal material in the heat transfer fluids has been tested at different temperature. Hastelloys C-276 in eutectic molten salts a mixture of NaCl, KCl and ZnCl2 using potentiodynamic method (swap from ± 30 mV in 0.2 mV.s-1). The lowest corrosion rate of Hastelloy C-276 is 5.51 µm per year at 250 °C. Particularly, the corrosion rate of Hastelloy C-276 jumps up to 53.33 µm per year at 400 °C. / Dissertation/Thesis / M.S.Tech Technology 2013
26

STATE OF HEALTH DETERMINATION OF BATTERIES AT VARIOUS OPERATING CONDITIONS

January 2014 (has links)
abstract: Objective of the study is to get a clear idea on the cyclic performance of duty operation of Batteries. Batteries are an integral part of solar plants and wind energy farms due to the fact that energy storage is vital in these places. Various types of losses related to the performance are clearly analyzed and studied. Assessment of State Of Health and State Of Charge is critical in order to maximize the performance and lifetime of a battery. Batteries were subjected to temperature and charge/discharge rate variations and found that the state of health degradation was severe at high temperature along with faster rate of charging compared to other evaluation conditions. The entire research was conducted at the Alternative Energy Technology Laboratory located at Arizona State University, Mesa. It involved the use of various instruments namely the Programmable Voltage Regulator for charging, Computerized Battery Analyzer and Programmable Electric Load for discharging and also the PARSTAT potentiostat for measuring the impedance of various battery technologies under study. At first, the Batteries were discharged and based on the time taken, it was charged for the next cycle. Impedance measurement was done at regular cycle intervals in order to study the degradation of health. For every cycle, the battery capacity was also calculated and noted down. . The results obtained show that low and stable impedance over the given cycle life is an important consideration in the selection of batteries according to the applications. / Dissertation/Thesis / M.S.Tech Technology 2014
27

Photophysics of Bio-Inspired Solar Energy Conversion

January 2014 (has links)
abstract: Increased global demand for energy has led to prolific use of fossil fuels, which produce and release greenhouse gases, such as carbon dioxide. This increase in atmospheric carbon dioxide affects the global weather system and has been cited as a cause for global warming. For humans to continue to meet demands for energy while reducing greenhouse emission, a sustainable, carbon-neutral energy source must be developed. The sun provides energy for the majority of life on earth, as well as the energy stored in the chemical bonds of fossil fuels. This dissertation investigates systems inspired by the biological mechanism of solar energy capture and storage. In natural photosynthesis, organisms use chlorophyll as a chromophore to absorb the sun's energy. Bio-inspired systems use close analogues like porphyrins and phthalocyanines. In this dissertation, a soluble, semiconducting porphyrin is reported. The polymer was synthesized via a Buchwald-Hartwig style coupling of porphyrin monomers which produced a polyaniline-like chain with porphyrins incorporated into the backbone. Spectroscopic and electrochemical studies were performed, which show evidence of excited state charge transfer and a first oxidation state of 0.58 V (vs SCE). These properties suggest that the polymer could be involved in excited state electron donation to fullerenes and other electron acceptors, which could be beneficial in organic photovoltaics, sensors, and other applications. Molecular dyads and triads capable of charge separation have been studied for decades, and the spectroscopic properties of two novel systems are reported in this dissertation. A peripherally-connected zinc-phthalocyanine-C60 dyad was studied, and showed excited state electron transfer from the phthalocyanine excited state to the C60, with a long-lived charge separated state. An axially-linked carotene-Si-pthalocyanine-C60 triad was studied, showing excited state electron transfer from the phthalocyanine to the C60, but fast recombination before hole transfer can occur to the carotene. Analogues of the electron transport mechanisms used in many biological systems use iron-sulfur clusters to shuttle electrons from donors to acceptors. In this dissertation, the spectroscopic properties of a de novo protein were studied. Nanosecond transient absorption was used to characterize the electron and energy transfer of an excited water-soluble porphyrin to the oxidized [FeS] clusters incorporated in the de novo protein. The triplet state of the porphyrin was strongly quenched with the holo-protein without a rise in porphyrin plus signal, suggesting that only Dexter-type energy transfer occurs between the sensitized porphyrin and the [FeS] clusters. / Dissertation/Thesis / Ph.D. Chemistry 2014
28

HOLOMORPHIC EMBEDDED LOAD-FLOW METHOD'S APPLICATION ON THREE-PHASE DISTRIBUTION SYSTEM WITH UNBALANCED WYE-CONNECTED LOADS

Gupta, Nitin 21 June 2021 (has links)
No description available.
29

Student Perceptions of the Alternative School

Herrington, Tina Sabrina 12 May 2012 (has links)
Some students find it difficult to reach graduation in a regular secondary school setting, but may be successful in an alternative setting. Causes of not graduating could include high absenteeism and behavior problems, which may result in dropping out. This study sought student perceptions of an alternative program in a public school district in the state of Mississippi. The participants were 10 students and their parents, 10 teachers, and the administrator. Data included interviews and school documents, and were analyzed using the constant comparative method. This research found that some of the students were enthused upon receiving alternative placement. Students liked the curriculum tailored to their individual needs, more one-on-one time with the teacher, and the opportunity to focus on the changes that they needed to make to improve their educational opportunities. Some parents expressed their disappointment in their child’s placement; however, there were some parents who prefer the alternative school over regular school. The parents who were disappointed thought it to be a place where they put bad kids and where the teachers were not good teachers. The parents who preferred it liked the smaller teacher-student ratio and believed that alternative teachers were more supportive and kind. The teachers expressed the alternative school does not get the same attention as other district schools and is seen as a dumping ground for both teachers and students. Recommendations to the district include: evaluate the criteria for placing students in the alternative school, increase communication between the alternative and the regular school, provide a specialist to help focus on student learning styles, provide a full-time counselor to help students deal with the issues contributing to their lack of success in the regular school, and improve the physical setting for the alternative school. Further research is needed in the district: to determine what could be improved in the alternative academic program; to determine whether the alternative school curriculum is meeting state standards; and to examine the acceptance of students and faculty in the alternative program by district students and personnel.
30

Perceptions of K-12 Alternative Education Program Leaders in the Commonwealth of Virginia

Thiemann, Angela Amiss 01 July 2021 (has links)
Preparation leadership programs for beginning and inexperienced alternative education program leaders are mostly non-existent (Price and Doney 2009). Although finding administrators who have a passion for the alternative education setting is difficult, the challenge and goal to prepare these new leaders to become highly effective leaders in the alternative education environment is just as challenging. "There is little research, however, on exactly what leaders of alternative education programs need in terms of skills, preparation, and training to be successful" (Price and Martin, 2010, p. 3). The purpose of this study was to identify the perceptions of K-12 alternative education program leaders in the Commonwealth of Virginia on the experiences, skills, training, and preparation needed for effective alternative education program leadership. Utilizing a basic qualitative research design, structured interviews were used to identify the perceptions of K-12 alternative education program leaders in the Commonwealth of Virginia on the experiences, skills, training, and preparation needed for leadership. / Doctor of Education / The course of study required for administrators to become certified principals lacks specialized instruction to focus on the challenges in alternative education program leadership. Although finding administrators who have a passion for the alternative education setting is difficult, the challenge and goal to prepare these new leaders to become highly effective leaders in the alternative education environment is just as challenging. The purpose of this study was to identify the perceptions of K-12 alternative education program leaders in the Commonwealth of Virginia on the experiences, skills, training, and preparation needed for program leadership. Data were collected using qualitative methodologies. Alternative education program leaders from four schools, grades K-12 in the Commonwealth of Virginia were used in this study. This study yielded 4 findings and four implications for practice. Suggestions for future study would be to conduct the study during a non-pandemic year to include additional alternative education leaders across the Commonwealth of Virginia. All the data obtained provided K-12 alternative education program leadership perceptions about how these findings could assist aspiring school leaders to become better informed on alternative education leadership.

Page generated in 0.0788 seconds