Spelling suggestions: "subject:"alternative power sources"" "subject:"allternative power sources""
1 |
Design and development of a phosphoric acid fuel cellPholo, Thapelo 06 1900 (has links)
Thesis (M. Tech. Engineering: Electrical)--Vaal University of Technology / Fuel cells are electrochemical devices that convert chemical energy of a fuel cell into
electricity at high efficiency without combustion. They are viewed as viable power
sources for many applications including automobiles, distributed power generation and
portable electronics. This dissertation presents the design and development of a
phosphoric acid fuel cell. It deals with the experimental studies on phosphoric acid fuel
cells and possible integration in replacing the conventional sources of electrical energy
in stand-by power supply systems, particularly for use in the telecommunications industry. The design of a DC-DC converter system is also incorporated into the system. The first objective was to establish performance parameters and past studies on phosphoric acid fuel cells and this research revealed that parameters that affect the system's performance include: reactant gas pressures, mass flow rates as well as the operating temperature. Mathematical models in the literature were studied and verified against the simulation models acquired. The second objective was to design and assemble a single cell in order to analyze the cell's performances as well as the operating parameters in order to obtain a model for predicting and simulating the performance of larger fuel cell stacks.
The next objective was to analyse from a set of design equations and construct a small
DC-DC converter. The converter was used to boost a small fuel cell voltage and regulate
it at a higher voltage level. Finally, the performance characteristics of the developed fuel cell, mathematical and simulation models were evaluated and compared. Simulation results for the models and the converter showing a regulated output voltage are presented. Some recommendations for improved system performance and for further studies are suggested.
|
2 |
Sistema supervisorio de gestão de multiplas fontes de suprimento para aplicações em veiculos eletricos / Energy management supervisory system of multiple power sources for electric vehicle applicationsFerreira, Andre Augusto 26 February 2007 (has links)
Orientador: Jose Antenor Pomilio / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-09T17:49:15Z (GMT). No. of bitstreams: 1
Ferreira_AndreAugusto_D.pdf: 4648060 bytes, checksum: fec10ea5d77379b209259bd3174d9224 (MD5)
Previous issue date: 2007 / Resumo: Este trabalho propõe uma estratégia de gestão de energia, para aplicações em veículos elétricos, baseado em um sistema supervisório nebuloso que combina três diferentes fontes de suprimento, em termos de densidade de energia e de densidade de potência, a saber: célula a combustível, bateria e supercapacitor. O sistema supervisório coordena o fluxo de potência entre os dispositivos de suprimento de energia e provê elevada qualidade de energia necessária para um bom desempenho do sistema de propulsão do veículo elétrico. A estratégia proposta de gestão de energia do conversor eletrônico com múltiplas entradas possibilita o controle individual da transferência de potência das fontes de suprimento, em suas melhores regiões da atuação. Um conveniente arranjo entre as fontes e alocação dos recursos disponíveis permite reduzir o dimensionamento da célula a combustível. Adicionalmente, a vida útil destas fontes e a imunidade do sistema de suprimento a variações bruscas de demanda de potência são melhoradas. Um protótipo de 3 kW é simulado e avaliado experimentalmente, incluindo um banco de baterias de chumbo-ácido e supercapacitor, para comprovar a eficácia da estratégia de controle proposta / Abstract: This work introduces an Energy Management strategy, for electrical vehicle applications, based on a fuzzy logic supervisory system that is able to combine three different power supply sources, i. e., fuel cell, battery and supercapacitor. The supervisory system coordinates the power flow between the power sources so that the system is able to provide high power quality, which is needed to achieve the desirable dynamic performance of the propulsion system. The proposed energy management strategy of a multiple input power electronic converter takes advantage of the individual characteristics of each power sou rce and makes than operate atthe best operation region. Through adequate power sources arrangements and use of the available resources, the fuel cell size is reduced. In addition, the power sources¿ life time and the system ride-through at sudden load disturbances are increased. Simulation and experimental results of a 3 kW prototype, with real supercapacitor and lead-acid batteries bank, prove that the fuzzy logic is a suitable energy management control strategy / Doutorado / Automação / Doutor em Engenharia Elétrica
|
3 |
Systém napájení domácnosti z obnovitelných zdrojů energie / Power Supply System for Housis Using Renewable ResourcesGálus, Matej January 2011 (has links)
The aim of this thesis is to describe the advantages of simultaneous utilization of photovoltaic and wind electricity in an autonomous system, supplying the household with electricity without connection to the electrical grid. The most used methods of connecting photovoltaic modules and wind generators to chemical batteries are discussed. Several maximum power point tracking methods and their properties are described. A block schematic diagram of an autonomous off-grid system utilizing chemical accumulators is proposed. The system also contains an inverter producing standard mains voltage 230 VAC to supply common household appliances. A Quasi-Square Wave converter topology was chosen for all three power converters. An experimental 180 W output power QSW converter with one controllable switch was designed, simulated with Pspice, manufactured and tested to verify the efficiency of the topology. Excellent agreement was found between predicted and measured efficiency at full output power. Efficiency for reliable operation varies between 89% and 92,2% at full power and depends mainly power inductor and MOSFET used. After successful evaluation of QSW topology, the power converters for the main system were designed. Because of higher power, the converters were designed as four-phase, whereas each phase contains two controllable switches to boost efficiency mainly in low-power area. The most critical and difficult part of the project was to design the mixed-signal control sections for the converters to ensure proper switching of two controllable MOSFETs in each phase. For user interactivity, main control board with graphic LC display, Ethernet module and SD memory card slot was also manufactured.
|
Page generated in 0.1031 seconds