Spelling suggestions: "subject:"aluminium 7surfaces"" "subject:"aluminium desurfaces""
1 |
Développement de solutions industrielles pour le traitement de surface par texturation laser permettant l'amélioration de l'adhésion de joints d'aluminiumVeilleux, Catherine 25 March 2024 (has links)
Titre de l'écran-titre (visionné le 7 août 20223) / L'industrie automobile est un domaine manufacturier repoussant constamment les méthodes de fabrication des composants. Avec une production d'environ 91 millions de véhicules par an, le rythme de production et la qualité des pièces fabriquées sont critiques, et les procédés industriels utilisés pour faire ces pièces doivent progresser en conséquence. L'une des méthodes d'assemblage couramment utilisée est le collage de joints métalliques par adhésifs, qui nécessite une bonne préparation des surfaces pour assurer la durabilité du joint. D'autre part, la présence de lasers à fibre dans l'industrie est grandissante, que ce soit pour couper, souder, marquer ou nettoyer les composants. Cette technologie est plus durable, moins énergivore et plus verte que les procédés traditionnels. Ce projet de maîtrise, en partenariat avec la compagnie Laserax, vise à développer des solutions industrielles rapides, répétables et versatiles pour effectuer la préparation des surfaces d'aluminium avant collage à l'aide d'un laser haute puissance. D'abord, une revue de littérature est réalisée afin d'établir une base de connaissance sur le sujet en cause et de comprendre les avancés effectuées jusqu'à présent sur la préparation de surfaces au laser. Un laser à fibre pulsé et monomode transverse générant une puissance moyenne de 500W est ensuite utilisé afin de réaliser une texturation rapide et efficace des surfaces métalliques. Les joints collés sont soumis à des essais de résistance en force et à des cycles de vieillissement pour simuler les conditions réelles d'utilisation. De plus, la morphologie et la composition chimique des surfaces traitées sont analysées afin de démontrer la formation d'oxydes surfaciques qui favorisent l'adhésion. Au terme de ce projet, un ensemble de configurations de texturation laser ayant supporté avec succès un cycle de vieillissement rigoureux est présenté.
|
2 |
Studies Of Thermal, Nanomechanical And Tribological Characteristics Of Perfluoroalkyl Silanes Self Assembled On Aluminum SurfacesDevaprakasam, D 04 1900 (has links) (PDF)
No description available.
|
3 |
Generation, Characterization and Control of Nanoscale Surface RoughnessPendyala, Prashant January 2014 (has links) (PDF)
Surface roughness exists at many length scales-from atomic dimensions to meters. At sub-micron scale, the distribution of roughness is largely dependent on the process that generates the surface through the mechanisms of material removal/addition involved and the process parameters. The focus of the research is to quantitatively characterize the evolution of sub-micron scale surface roughness in the mechanical, chemical and electrochemical material removal techniques and study the influence of roughness on the mechanical behavior of surfaces.
High purity aluminum surfaces are subjected to surface dissolution techniques such as electropolishing, chemical etching and anodization. Owing to the lack of sufficient lateral resolution in conventional roughness measurement techniques and appropriate scale independent roughness characterization techniques, the effect sub-micron scale electrochemical inhomogeneities present on the surfaces have on the roughness evolution at various length scales has not been understood. In this work, the power spectral density method of roughness characterization is used to quantitatively evaluate the roughness length scales affected in the surface generation processes as a function of time. Results indicate that in the case of electropolishing, roughness is not uniformly reduced at all length scales. Further, cut-off frequencies are suggested to optimize the electropolishing process. In chemical etching, the nature of roughness produced is found to be dependent on the nature of the starting surface. The nature of surface and sub-surface structures produced in the initial stage of the anodization process, and the transition from a disordered to an ordered structure are studied.
In order to study the mechanical behavior of surfaces as a function of surface roughness, a single asperity indentation is modeled using nanoindentation of micropillar produced by focused ion beam machining of aluminum surfaces. Load-displacement curves are constructed to show the transition from a single asperity deformation to bulk deformation as function of indentation depth. Additionally, indentation responses of polymer coated surfaces with varying degree of roughness that were produced by the aforementioned surface generation processes are studied. it is shown how high interface roughness gives rise to high scatter both in loading and unloading portions of the load-displacement curves. Finally, porous alumina surface generated by the anodization process discussed above is indented to simulate a multi-asperity interaction.
|
Page generated in 0.052 seconds