Spelling suggestions: "subject:"aluminum alloys"" "subject:"fluminum alloys""
371 |
Avaliação do comportamento mecânico de ligas Al-Xwt%Si-5wt%Zn tixoconformadas / Evaluation of the mechanical behavior of Al-Xwt%Si-5wt%Zn thixoforged alloysVilas Bôas, Bruna 20 August 2018 (has links)
Orientador: Eugênio José Zoqui / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-20T11:43:58Z (GMT). No. of bitstreams: 1
VilasBoas_Bruna_M.pdf: 42430697 bytes, checksum: 87567412122ac22fa1c23e2b330933f0 (MD5)
Previous issue date: 2012 / Resumo: Esta dissertação tem como finalidade avaliar a tixoconformabilidade das ligas Al- 4wt%Si-5wt%Zn, Al-5wt%Si-5wt%Zn, Al-6wt%Si-5wt%Zn. Para tanto, essas ligas foram submetidas a um tratamento térmico de globularização pelos tempos de 0s, 30s, 90s e 210s, na fração sólida de 45%, para assim, ocorrer o tixoforjamento em prensa excêntrica e em prensa pneumática. Posteriormente, foi feita a caracterização micro e macroestrutural das peças tixoconformadas. Em seguida, foram analisadas as propriedades mecânicas da peça tixoforjada através do ensaio de tração, e da análise da porosidade do material. Como resultado principal destaca-se que as três ligas apresentaram boas propriedades mecânicas após a tixoconformação e que as peças tixoconformadas na prensa pneumática apresentou melhores propriedades mecânicas do que a prensa excêntrica / Abstract: This dissertation aims to evaluate the thixoconformability of Al-4% Si-5% Zn, Al- 5% Si-5% Zn, Al-6% Si-5% Zn alloys. For this, these alloys were subjected to a heat treatment of globularization by the following periods of times 0s, 30s, 90s and 210s in the solid fraction of 45%, so that it can occurs the thixoforging in the eccentric press and the pneumatic press. Later on, it was made the characterization of micro and macrostructural thixoforged pieces. Next, we analyzed the mechanical properties of thixoforged pieces through tensile testing, and analysis of the porosity of the material. As a main result, it stands out that the three alloys showed good mechanical properties after thixoforming and thixoforged pieces in pneumatic press showed better mechanical properties than the eccentric press / Mestrado / Materiais e Processos de Fabricação / Mestre em Engenharia Mecânica
|
372 |
Process-Structure-Property Relationships in Friction Stir Welded Precipitation Strengthened Aluminum AlloysMondal, Barnali 05 1900 (has links)
Through a series of carefully designed experiments, characterization and some modeling tools, this work is aimed at studying the role of thermal profiles on different microstructural zones and associated properties like strength and corrosion through a variation of weld parameters, thermal boundary conditions and material temper. Two different alloys belonging to the Al-Cu and Al-Cu-Li system in different temper conditions- peak aged (T8) and annealed (O) were used. A 3D-thermal pseudo mechanical (TPM) model is developed for the FSW process using heat transfer module in COMSOL Multiphysics and is based on a heat source wherein the temperature dependent yield shear stress is used for the heat generation. The precipitation and coarsening model is based on the Kampmann and Wagner theoretical framework and accounts for the competition between the various nucleation sites for both metastable and equilibrium precipitates. The model predicts different precipitate mean radius and volume fraction for the various zones in the friction stir welded material. A model for the yield strength is developed which considers contributions from different strengthening mechanisms. The predictions of the each models have been verified against experimental data and literature. At constant advance per rotation, the peak temperature decreases with a decrease in traverse speed and increases with an increase in tool rotation. Weld properties were significantly affected by choice of thermal boundary conditions in terms of backing plate diffusivity. Weld conditions with a higher peak temperature and high strain rate results in more dissolution of precipitates and fragmentation of constituent particles resulting in a better corrosion behavior for the weld nugget. For a peak aged temper of 2XXX alloys, the weld nugget experiences dissolution of strengthening precipitates resulting in a lower strength and the Heat affected zone (HAZ) experiences coarsening of precipitates. For an annealed material, both the weld nugget and HAZ experiences dissolution of precipitates with an increase in strength in the weld nugget.
|
373 |
Characterization and Mechanical Properties of Nanoscale Precipitates in Modified Al-Si-Cu Alloys Using Transmission Electron Microscopy and 3D Atom Probe Tomography.Hwang, Junyeon 05 1900 (has links)
Among the commercial aluminum alloys, aluminum 319 (Al-7wt%Si-4wt%Cu) type alloys are popularly used in automobile engine parts. These alloys have good casting characteristics and excellent mechanical properties resulting from a suitable heat treatment. To get a high strength in the 319 type alloys, grain refining, reducing the porosity, solid solution hardening, and precipitation hardening are preferred. All experimental variables such as solidification condition, composition, and heat treatment are influence on the precipitation behavior; however, precipitation hardening is the most significant because excess alloying elements from supersaturated solid solution form fine particles which act as obstacles to dislocation movement. The challenges of the 319 type alloys arise due to small size of precipitate and complex aging response caused by multi components. It is important to determine the chemical composition, crystal structure, and orientation relationship as well as precipitate morphology in order to understand the precipitation behavior and strengthening mechanism. In this study, the mechanical properties and microstructure were investigated using transmission electron microscopy and three dimensional atom probe tomography. The Mn and Mg effects on the microstructure and mechanical properties are discussed with crystallographic study on the iron intermetallic phases. The microstructural evolution and nucleation study on the precipitates in the low-Si 319 type aluminum alloys are also presented with sample preparation and analysis condition of TEM and 3DAP tomography.
|
374 |
Transient processing and characterizatin of advanced materials /Moussa, Sherif Omar Hassan, January 2003 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2003. / Typescript. Vita. Includes bibliographical references (leaves 160-167). Also available on the Internet.
|
375 |
Transient processing and characterizatin of advanced materialsMoussa, Sherif Omar Hassan, January 2003 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2003. / Typescript. Vita. Includes bibliographical references (leaves 160-167). Also available on the Internet.
|
376 |
Effect [sic] des paramètres métallurgiques sur le comportement d'usinage des alliages 356 et 319 (étude de forage et de taraudage) /Tash, Mahmoud, January 2005 (has links)
Thèse (D.Ing.) -- Université du Québec à Chicoutimi, 2005. / Bibliogr.: f. 240-252. Document électronique également accessible en format PDF. CaQCU
|
377 |
Ultrasonic Processing of Aluminum 2139 and 7050Reed, Jordan Derek 08 1900 (has links)
Acoustics is the study of all sound waves, with ultrasound classified as those frequencies above 20,000 Hz. Currently, ultrasound is being used in many industries for a variety of purposes such as ultrasonic imaging, ultrasonic assisted friction stir welding, and ultrasonic spot welding. Despite these uses, the effects of ultrasound on phase stability and resultant mechanical properties has been minimally analyzed. Here we study the impact waves play in ultrasonic welding and design an apparatus to maximize waves entering aluminum alloy samples. Aluminum 2139 and 7050 are used because they are precipitation strengthened by metastable phases so temperature change, and the corresponding phase stability, can greatly impact their strength. Results suggest that the ultrasonic welder primarily imposes a localized temperature spike due to friction, averaging over 200°C in a few seconds, which generally lowers the Vickers hardness due to coarsening or even dissolution of strengthening precipitates. Conversely, the new design increases the Vickers hardness by up to 30% over the initial hardness of approximately 63HV for aluminum 2139 and 83HV for aluminum 7050, respectively, while only increasing the temperature by an average of approximately 10°C. This new design was unable to achieve peak hardness, but the strengthening it achieved in two minutes was equivalent to one month of natural aging. If this system was able to be fine-tuned, it could serve as a quick strengthening process for recently weakened aluminum alloys, such as after friction stir welding.
|
378 |
TEXTURE, MICROSTRUCTURE AND FORMABILITY OF ALUMINUM ALLOYSCheng, Xiang-Ming 01 January 2001 (has links)
Texture, microstructure and formability were studied in Direct Chill Cast (DC) and Strip Cast (SC) aluminum alloys with regard to crystallographic anisotropy, the Portevin-Le Chatelier effect and aging softening behavior. It was found that material properties change greatly with manufacturing processes (DC vs. SC) and chemical composition (3xxx vs. 5 xxx alloys). DC cast hot band materials are usually fully recrystallized and have strong softening textures while SC hot band materials have a rolling structure with strong deformation textures. Softening textures cause 90 earing while deformation textures result in 45 earing after deep drawing. During cold rolling, 90 earing in DC cast hot band materials decreases and eventually changes to 45 earing after certain degrees of cold reduction. Correspondingly, the intensity of the softening texture components in DC cast hot band materials decreases while the intensity of deformation texture components increases with increasing degrees of cold reduction. These two kinds of textures interact and attempt to balance each other during cold rolling which produces resultant earing. However, this is not true for SC hot band materials since it's hard to obtain strong softening textures and thus 90 earing in these materials. 5 xxx Al-Mg alloys are more difficult to work than 3 xxx aluminum alloys. Elevated temperature annealing which greatly reduces the strength (hardness) improves significantly the workability of Al-Mg alloys. On the other hand, the Portevin-Le Chatelier effect and aging softening behavior are stronger in Al-Mg alloys than in 3xxx aluminum alloys and both increase with increasing cold reduction and with increasing Mg content. An apparent tensile anisotropy exists in as received SC hot band materials. The tensile yield strength (YS) is smaller in the QD (45 to the rolling direction), and larger in the RD (rolling direction) and the TD (transverse direction). There is no obvious difference in YS between these RD and TD directions. The average stress drop of serrations in the PLC effect, D s , is strongest in the TD, smallest in the RD with QD in between but closer to TD. However, no tensile anisotropy was observed in a fully recrystallized DC hot band or in solution treated SC hot band materials. It was found that a rolling structure favors mechanical anisotropy while a recrystallized structure prevents it. The tensile anisotropy is due to anisotropic distributions of microstructures, i.e., dislocations, precipitates and solute atoms. A random microstructure is associated with material that shows little or no mechanical anisotropy. An elongated or preferably orientated microstructure is associated with material with high mechanical anisotropy. Recovery thermal treatments at sufficiently high temperatures so that dislocation annihilation and microstructure rearrangement occurs when applied to the final gauge material also lowers mechanical anisotropy because of the reduction in intensity of the elongated (preferably orientated) microstructure. In addition, plastically deforming the material in a more homogenous manner (such as cross rolling as compared to straight rolling) produces a more uniform microstructure with an accompanying lower mechanical anisotropy.
|
379 |
Friction stir processing parameters and property distributions in cast nickel aluminum bronzeRosemark, Brian P. 12 1900 (has links)
Cast nickel-aluminum bronze (NAB) alloy is specified for many marine applications, including ship propellers, due to its excellent corrosion-resistance combined with acceptable mechanical properties. Friction stir processing (FSP) can be used to improve the alloyâ s mechanical properties by localized microstructure modification in the cast material. FSP converts an as-cast microstructure to a wrought condition in the absence of macroscopic shape change, closes porosity, and provides a means to surface harden the castings. The closure of porosity near the surface of the material may shorten the manufacturing and processing time for ship propellers. The surface hardening of cast NAB alloy can be used to increase the wear life of ship propellers. Rockwell Scientific Corporation (now Teledyne Scientific Corporation) supplied three Nickel Aluminum Bronze alloy plates which have been friction stir processed in a raster pattern under a Defense Advanced Research Project Agency (DARPA) project. Each plate had been processed using a different tool RPM and IPM (inches per minute of transverse) combination. Miniature tensile samples were sectioned from the FSP zone and surrounding base metal and mechanical property distributions were determined in these regions. The material within the FSP zone exhibited consistently higher yield strengths, ultimate tensile strengths, and ductilities than the as-cast base metal.
|
380 |
Friction Stir Processing of Aluminum AlloysSun, Ning 04 September 2012 (has links)
Friction stir processing (FSP) has been developed based on the basic principles of friction stir welding (FSW), a solid-state joining process originally developed for aluminum alloys. What is attractive about FSP is that it can be incorporated in the overall manufacturing cycle as a post-processing step during the machining operation to provide localized modification and control of microstructures in near-surface layers of metallic components. FSP has emerged as an important post-processing technique, and has been identified as a process that may have a high impact, and perhaps is a disruptive manufacturing process. In this study, FSP has been applied to Al cast alloy A206, which is a high strength, widely used cast alloy in the manufacturing industry. Motivations behind this work are to (1) investigate the feasibility of FSP on manipulating the cast microstructure and strengthening the material, and (2) to explore the viability of FSP to produce a localized particle reinforced zone in cast A206 aluminum components. The thesis will show that we have optimized FSP for processing of Al alloys to locally manipulate the cast microstructure, eliminate casting defects, and attain grain refinement and second phase homogenization. We have established the mechanism leading to the microstructure evolution and have evaluated the resultant mechanical properties, i.e. hardness, tensile property and fatigue properties. We have also synthesized a localized composite material in the A206 work piece with three different reinforcement materials via FSP. These results will be presented and discussed.
|
Page generated in 0.0535 seconds