• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electrical conductivity studies of cast Al-Si and Al-Si-Mg alloys

Mülazımoğlu, Mehmet Hașim January 1988 (has links)
Cast Al-Si and Al-Si-Mg alloys containing up to 12.6 wt. pct. silicon and 1.0 wt. pct. magnesium were prepared. The changes in electrical conductivity/resistivity of these alloys due to strontium additions have been investigated and explained in terms of variations in microstructure. The conductivity behaviour of strontium-containing and strontium-free alloys was found to exhibit marked differences, depending on the silicon and magnesium contents and the rate of solidification. The electrical conductivity of single phase alloys containing less than 1.60 wt. pct. Si decreased with increasing silicon and magnesium levels. However, strontium had no effect on the conductivity of these solid solution alloys since it does not dissolve appreciably in the aluminum matrix or change the solid solubility of silicon and magnesium in aluminum. Silicon precipitation processes in the supersaturated solid solution alloys of Al-Si and Al-Si-Sr have been examined using the Johnson-Mehl-Avrami equation and found to be isokinetic. Strontium, however, retarded the growth rate of silicon precipitates. Strontium did not affect the kinetics of G.P. zone formation in Al-Si-Mg alloys but it suppressed the formation of stable Mg$ sb2$Si precipitates during subsequent aging at 175$ sp circ$C. Unlike the single phase alloys, two phase Al-Si and Al-Si-Sr alloys, in the range of 2.0 to 12.6 wt. pct. Si, exhibited different electrical conductivity behaviour. The strontium-containing alloys showed a higher conductivity than alloys with no strontium, and this conductivity difference increased as the silicon and magnesium contents were increased and the solidification rate was decreased. It has been demonstrated this difference is due to changes in the silicon morphology. Electron scattering at the interface between the aluminum matrix and the eutectic silicon phase contributes significantly more to the resistivity of unmodified alloys than that of modified alloys. In addition, the resistivity of
2

Electrical conductivity studies of cast Al-Si and Al-Si-Mg alloys

Mülazımoğlu, Mehmet Hașim January 1988 (has links)
No description available.

Page generated in 0.0833 seconds