• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of the fusion-zone microstructure in Tig-welded bead-on-plate large-grained alloy 1100 aluminum

Gregory, Joseph Terrence, January 1900 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1970. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliography.
2

Analysis of material flow around a retractable pin in a friction stir weld

Georgeou, Zacharias January 2003 (has links)
Friction StirWelding (FSW) has been researched for a number of years since its inception in 1991. The work thus far has been based on understanding the material and thermal flow using the standard fixed pin tool. The keyhole resulting during tool extraction in a FSW weld, is a disadvantage and a current limiting factor. Eliminating this effect from a weld using a movable pin tools would make FSW more commercially viable. This dissertation focuses on the design of a novel retractable pin tool, and highlights the problems encountered during the welding of Aluminum plates, Al2024 and Al5083. Previously studied techniques of material and thermal flow were used, to investigate the effect of the tool during extraction in a FSW weld. A prototype retractable tool was designed using parametric and axiomatic design theory, and implementing a pneumatic muscle actuation system. The resulting problems in the calibration of the retractable pin tool and the resulting welds are presented, these results confirming previous studies. The movable pin produced discrepancies the heat generation around the shoulder during a FSW weld. The failure of this tool to produce a reasonable weld showed that previous ideas into the workings of a retractable pin tool requires further investigation, furthermore a fresh approach to the interpretation and understanding of the FSW weld process needs consideration.
3

Development and analysis of a friction stir spot welding process for aluminium

Stephen, Michael George January 2005 (has links)
Friction Stir Spot Welding (FSSW) has been developed from the conventional Friction Stir Welding (FSW) process, developed at The Welding Institute (TWI). FSSWs have been done without the keyhole being eliminated. Elimination of the keyhole would result in the process being more commercially viable. This dissertation focuses on an attempt of eliminating the keyhole using a retractable pin tool as well as a comparison of the weld integrity of a FSSW to that of a conventional Resistance Spot Weld (RSW). Welds were conducted on aluminium alloy 6063 T4. Comparisons between different weld procedures were done. Further analysis of the weld integrity between FSSW and RSW were conducted, comparing tensile strengths, microstructure and hardness. For the above welding procedure to take place, the current retractable pin tool, patented by PE Technikon, was redesigned. Problems associated during the welding process and the results obtained are documented. Reasons for the keyhole not being eliminated as well as recommendations for future work in the attempt to remove the keyhole are discussed.
4

Increasing the gap tolerance in friction stir welded joints of AA6082-T6

Oyedemi, Kayode January 2012 (has links)
This research project was conducted to increase weld gap tolerance in Friction Stir Welding (FSW) of 8 mm thick aluminum alloy 6082 – T6. Investigation was done on I-STIR PDS platform and a Johnford milling machine. The research project involved tool-pin design with varying re-entrant features and varying parameters as a method of weld gap closing to produce successful welds. Direction of spindle rotation and dwell time were established as part of a preliminary study. Clockwise spindle rotation with 20 seconds dwell time allows sufficient plasticity and improved material flow which assisted in achieving welds with prior 30 percent weld gap of the plate thickness. Final welds were made using three rotational speeds and feed rates with sufficient plunging to prevent root defects. Analysis of the results were detailed which include vickers microhardness test, tensile test and metallographic observation to access the suitability of the weld structure. From the set of tool-pins designed, the flare tool-pin gave a well-defined weld nugget with improved stirring at the weld root. Also, with a concave shoulder, right hand threaded tool-pin and counterclockwise flutes undergoing a clockwise spindle rotation, plasticized material flow was upward which was beneficial in reducing the amount of plate thinning. The right hand thread counter clockwise flute with a flute machined in the foot exhibited superior tensile strength for welds containing 30 percent weld gap.
5

Friction Stir Welding of High Strength Precipitation Strengthened Aluminum Alloys

Sidhar, Harpreet 08 1900 (has links)
Rising demand for improved fuel economy and structural efficiency are the key factors for use of aluminum alloys for light weighting in aerospace industries. Precipitation strengthened 2XXX and 7XXX aluminum alloys are the key aluminum alloys used extensively in aerospace industry. Welding and joining is the critical step in manufacturing of integrated structures. Joining of precipitation strengthened aluminum alloys using conventional fusion welding techniques is difficult and rather undesirable in as it produces dendritic microstructure and porosities which can undermine the structural integrity of weldments. Friction stir welding, invented in 1991, is a solid state joining technique inherently benefitted to reduces the possibility of common defects associated with fusion based welding techniques. Weldability of various 2XXX and 7XXX aluminum alloys via friction stir welding was investigated. Microstructural and mechanical property evolution during welding and after post weld heat treatment was studied using experimental techniques such as transmission electron microscopy, differential scanning calorimetry, hardness testing, and tensile testing. Various factors such as peak welding temperature, cooling rate, external cooling methods (thermal management) which affects the strength of the weldment were studied. Post weld heat treatment of AL-Mg-Li alloy produced joint as strong as the parent material. Modified post weld heat treatment in case of welding of Al-Zn-Mg alloy also resulted in near 100% joint efficiency whereas the maximum weld strength achieved in case of welds of Al-Cu-Li alloys was around 80-85% of parent material strength. Low dislocation density and high nucleation barrier for the precipitates was observed to be responsible for relatively low strength recovery in Al-Cu-Li alloys as compared to Al-Mg-Li and Al-Zn-Mg alloys.
6

Kvalifikace postupu svařování hliníkové slitiny AW-5083 H111 / Qualification of welding procedure for aluminium alloy AW-5083 H111

Krejza, Jan January 2019 (has links)
The diploma thesis deals with the qualification of welding process of aluminum alloy EN AW-5083 H111. This aluminum alloy was used to make a Venturi tube. Therefore, a literature review has been developed dealing with the properties and use of aluminum and its alloys. The next chapter deals with the weldability of aluminum, aluminum alloys and the weldability of EN AW-5083 alloy. Part of the work is devoted to the used TIG method and its specifics when welding aluminum materials. The practical part of the thesis deals with the actual qualification of welding procedures according to the relevant standard and evaluation of production conditions according to the product standard. The last chapter deals with the overall manufacturing process of the Venturi tube.
7

Process-Structure-Property Relationships in Friction Stir Welded Precipitation Strengthened Aluminum Alloys

Mondal, Barnali 05 1900 (has links)
Through a series of carefully designed experiments, characterization and some modeling tools, this work is aimed at studying the role of thermal profiles on different microstructural zones and associated properties like strength and corrosion through a variation of weld parameters, thermal boundary conditions and material temper. Two different alloys belonging to the Al-Cu and Al-Cu-Li system in different temper conditions- peak aged (T8) and annealed (O) were used. A 3D-thermal pseudo mechanical (TPM) model is developed for the FSW process using heat transfer module in COMSOL Multiphysics and is based on a heat source wherein the temperature dependent yield shear stress is used for the heat generation. The precipitation and coarsening model is based on the Kampmann and Wagner theoretical framework and accounts for the competition between the various nucleation sites for both metastable and equilibrium precipitates. The model predicts different precipitate mean radius and volume fraction for the various zones in the friction stir welded material. A model for the yield strength is developed which considers contributions from different strengthening mechanisms. The predictions of the each models have been verified against experimental data and literature. At constant advance per rotation, the peak temperature decreases with a decrease in traverse speed and increases with an increase in tool rotation. Weld properties were significantly affected by choice of thermal boundary conditions in terms of backing plate diffusivity. Weld conditions with a higher peak temperature and high strain rate results in more dissolution of precipitates and fragmentation of constituent particles resulting in a better corrosion behavior for the weld nugget. For a peak aged temper of 2XXX alloys, the weld nugget experiences dissolution of strengthening precipitates resulting in a lower strength and the Heat affected zone (HAZ) experiences coarsening of precipitates. For an annealed material, both the weld nugget and HAZ experiences dissolution of precipitates with an increase in strength in the weld nugget.

Page generated in 0.3441 seconds