• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 12
  • 12
  • 12
  • 12
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental and numerical investigation of heat treatment of al-si-cu alloy

Cupido, Llewellyn Heinrich January 2014 (has links)
Dissertation submitted in fulfilment of the requirements for the degree Master of Technology: Mechanical Engineering in the Faculty of Engineering at the Cape Peninsula University of Technology / Aluminium alloys has seen recent increase usage in the automotive industry. This is due to the global obligation towards carbon emission reduction and fuel efficiency in the transport sector. The good strength-to-weight ratio offered by Al-Si-Cu alloys showed promising results towards the compliance of these environmentally friendly criteria. The enhanced mechanical properties is obtained when the alloy is subjected to the T6 heat treatment process, which cause microstructural changes due to the evolution of intermetallic phases. The process involves solution heat treatment, for dissolving soluble Cu- and Mg-containing phases, the homogenization of alloying elements, and the spheroidisation of eutectic Silicon. It is followed by quenching, for maximum precipitation hardening particle retention in solution, and a further artificial ageing process with the aim to acquire a uniform distribution of small precipitates, for strength improvement. The heat treatment schedule applied in this study was conducted as follows: Solution heat treatment at a temperature of 525°C for 6h Quenching in water of temperature 50°C; Artificial ageing for 8h at a temperature of 175°C, and then after left inside furnace to cool down to room temperature. This is higher than the 520°C, but shorter than the 8-12h, observed in literature. Also, quenching is done at a lower temperature rather than 60°C, and artificial ageing at a higher temperature, rather than the 155°C. This was done to be able to draw a comparison between the MAGMASOFT® simulation, which has this non-adjustable schedule, and the experimental results. The simulated and experimental results were comparable and similar outcomes, but with some discrepancies. Such as the porosity was far more visible and intense in the experimental, than what was predicted by the software. The as-cast and heat treated microstructure revealed the expected evolution of intermetallic particles, such as dissolving of the Al2Cu and the spheroidisation of the eutectic Si phases. Another phase that was identified was the insoluble AlFeSi and other possible Fe-containing phases, which due to the higher solution heat treatment temperature, showed partial fragmentation and dissolution. The study provided practical data about the effect of heat treatment on microstructural evolution and how it affects the properties of the Al-Si-Cu alloy. It also brought to the attention and understanding of how critical pouring temperature is, as it affect the initial nucleation, and cooling rate, and therefore the micro and macro properties.
2

The effect of intermediate thermomechanical treatments on the fatigue properties of two 7XXX aluminum alloys

Sanders, Robert Edward 08 1900 (has links)
No description available.
3

The effect of an intermediate thermomechanical treatment on the fatigue properties of I/M X7091 aluminum alloy

Chang, Hao 08 1900 (has links)
No description available.
4

The effects of recrystallization textures on the mechanical properties of a high strength P/M aluminum alloy, X7091

Kuo, Victor Wei-Chung 08 1900 (has links)
No description available.
5

Dissolution kinetics of powder alloy compacts in liquid aluminum

Kadoglou, Antonios Z. January 1983 (has links)
No description available.
6

Dissolution kinetics of powder alloy compacts in liquid aluminum

Kadoglou, Antonios Z. January 1983 (has links)
No description available.
7

The effects of thermal processing on the mechanical properties of AA2024, 2014 and 2618 aluminum alloys

Li, Xiao, 1963- 01 April 1993 (has links)
This study determined the independent effects of various homogenization cycles and precipitation treatments on the elevated temperature workability and the final ambient temperature mechanical properties of AA2024 aluminum alloy and on the T3 tensile properties of 2014 aluminum alloy as well as T6 tensile properties of 2618 and 2618 (Curich) aluminum alloys. The elevated-temperature tensile and extrusion tests indicate that the workability of AA2024 alloy improves with elevated-temperature precipitation treatment as suggested by earlier investigations. The precipitation treatments do not appear to degrade the ambient-temperature T3 and T8 tensile properties. The time at the precipitation temperature appears to affect the T3 and T8 tensile properties in unextruded ingot, longer times especially providing both relatively high ambient-temperature strength and ductility of AA2024 alloy. The time at the standard homogenization temperature and the heat-up and cool-down rates do not dramatically affect the T3 tensile properties of unextruded ingot of AA2024 and 2014 alloys. However, long soak times at the homogenization temperature and more rapid cooling rates may improve the properties somewhat of AA2024 alloy and longer heat-up times and rapid cooling rates may slightly improve the properties of 2014 alloy. The higher standard solution temperature appears to increase both strength and ductility of 2014 alloy over lower temperatures. The homogenization temperature affects the T6 tensile properties of 2618 and 2618 (Cu-rich) alloys, a high homogenization temperature (compare to standard homogenization temperature) providing both high strength and ductility. Increased manganese and copper appears to increase the strength, but slightly decreases the ductility. The standard aging temperature and time produce higher strength but lower the ductility than lower temperatures at the same or shorter aging times in 2618 (Cu-rich) alloy. / Graduation date: 1993
8

Deformation mechanisms of NiA1 cyclicly deformed near the brittle-to-ductile transition temperature

Cullers, Cheryl Lynne 05 1900 (has links)
No description available.
9

Optimisation of the mechanical properties of a modified aluminium 7% silicon-magnesium casting alloy by heat treatment

22 September 2015 (has links)
Due to the problem of obtaining the predicted mechanical properties for Al-Si alloys, especially after heat treatment, trial batches of sodium, strontium and unmodified alloys were cast. The alloys were cast using a standard test bar design. The material was solution treated, quenched and aged (at both increasing time and temperature) to obtain the best properties possible. Initial background information and theory was obtained at libraries to obtain a better working knowledge of the alloy...
10

Artificial aging treatments of 319-type aluminium alloys

Tavitas-Medrano, Francisco Javier. January 2007 (has links)
Aluminum-silicon-copper cast alloys of the 319-type have attained a commercially important status because of their widespread use. Artificial aging treatments are routinely applied to these alloys in order to obtain precipitation hardening and improve their mechanical properties. Standard treatments may not always yield the optimum achievable properties, thus Mg and Sr are commonly added to improve the response of the alloy to aging and to modify the eutectic Si morphology from acicular to fibrous, respectively. The present study was carried out to investigate aging behavior of four 319-type alloys in regard to such mechanical properties as their ultimate tensile strength, yield strength, microhardness, percent elongation and impact toughness. Non-conventional aging cycles were applied so as to evaluate the degree of the improvement in strength obtainable. These treatments, labeled in this study as T6- and T7-type multi-temperature and interrupted aging treatments, involve several heating stages at different temperatures, as opposed to the single stage at constant temperature specifications of the standard T6 or T7 heat treatment regimes. Scanning electron microscopy was used to examine the fracture surfaces of selected tensile-tested samples to compare the fracture behavior. Transmission electron microscopy was used to reveal and identify the tiny precipitates which appear in the microstructure as a result of the precipitation-hardening process due to artificial aging. It was found that the main strengthening phase is theta-Al2Cu in the form of needles; other phases were observed as minor constituents in this alloy, including the binary beta-Mg2Si, the ternary S-CuAlMg 2 and the quaternary Q-Al5Cu2Mg7Si 7. The results show that while Mg and Sr additions improve the properties of the alloy, the standard T6 treatment may not be the best available option to produce optimum properties. In fact, when the peak-aged (T6) condition is desired, the optimum treatment consists of a continuous artificial treatment at 170°C for 8 h; when the overaged (T7) condition is desired, a T7-type multi-temperature treatment consisting of underaging at 170°C for 1 h, then at 190°C for 1 h, and finally overaging at 240°C for 2 h is the best option.

Page generated in 0.0869 seconds