• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • Tagged with
  • 11
  • 11
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effects of combustion CVD-applied alumina coatings on the high temperature oxidation of a Ni-Cr alloy

Hendrick, Michelle Renee 05 1900 (has links)
No description available.
2

PHYSICAL AND CHEMICAL CHARACTERISTICS OF THE ZINCATE IMMERSION PROCESS FOR ALUMINUM AND ALUMINUM ALLOYS.

ZIPPERIAN, DONALD CHARLES. January 1987 (has links)
A detailed experimental study has been carried out to investigate the zincate immersion deposition process for 99.99%, 6061, and 356-T6 aluminum samples. In particular, the effect of iron and tartrate in the immersion bath, the aluminum surface preparation, and the relationship of the first immersion step to the second immersion step were investigated by chemical, electrochemical (polarization and rest potentials), and surface analytical scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES) techniques. Eh-pH diagrams were constructed to determine the most stable zinc, iron, and aluminum species in solution. These diagrams predict that ferrous and ferric ions, as well as aluminum should form stable complexes with tartrate at the typical immersion deposition conditions (Eh -0.9 to -1.0 and pH 14 to 15). Experimentally, tartrate was found to enhance the dissolution rate of aluminum in highly caustic solutions. The addition of ferric chloride to the immersion bath produced coatings that were more crystalline, and also decreased the amount of hydrogen gas evolved in the second immersion step. The deposition of zinc and iron during the second immersion step was considerably less than that during the first immersion step. The second immersion coating became more adherent as the initial surface roughness decreased, and as grain size was increased the second immersion coating became thicker. For increasing grain size the micrographs for the first and second immersion coatings showed that the coatings became more localized. The second immersion coating thickness and morphology were also dependent upon several first immersion variables, such as bath temperature, immersion time and bath composition. Increased dissolution rates of aluminum in the first immersion produced thinner coatings with a finer crystallite growth. Increased bath temperature and increased first immersion time enhanced the dissolution rate of aluminum. The zinc coating slowed the dissolution rate of aluminum. When zinc was absent from the first immersion bath, the aluminum dissolution was much faster and resulted in thinner coatings upon subsequent second immersion. The molar ratio of zinc deposited to aluminum dissolved was a constant value of 1.1 for both first and second immersions; the molar ratio was also constant for the different aluminum substrates examined in this investigation.
3

Microbiologically influenced corrosion and titanate conversion coatings on aluminum alloy 2024-T3 /

Cai, Hong, January 2006 (has links)
Thesis (Ph. D.)--University of Rhode Island, 2006. / Typescript. Includes bibliographical references (leaves 126-134).
4

Corrosion behaviour of aluminised steel and conventional alloys in simulated aluminium smelting cell environments /

Xu, Nan. January 2002 (has links)
Thesis (Ph. D.)--University of New South Wales, 2002. / Also available online.
5

PHYSICAL AND CHEMICAL CHARACTERIZATION OF TAILORED CHROMATOGRAPHIC ADSORBENTS

Dell'Ova, Vincent Edward January 1980 (has links)
The reaction between nitrogen-containing organic compounds (pyridines and amines) and alumina was studied through the use of chromatographic titrations and elemental analysis. The aluminum-nitrogen bond was the basis for the preparation of a series of new chromatographic adsorbents. A series of amines and pyridine homologs were bound to alumina and evaluated as chromatographic stationary phases. The surface coverage was determined using elemental analysis. The adsorption properties of the stationary phases were investigated by determining differential enthalpies, entropies, and free energies of adsorption for a selected group of organic moieties. Rate theory was used to examine further the interaction between the molecular probes and the tailored supports. Relative peak broadening was measured both as a function of flow rate and temperature to provide a chromatographic evaluation of molecular probe-adsorbent interaction occurring during the chromatographic process. Results indicated that the single-molecule moieties used as tailoring agents served as excellent deactivating agents but produced no significant changes in the selectivity of the adsorbents. Pellicular beads were synthesized by using 4-vinylpyridine as a linking agent between the alumina substrate and a series of polymers. The polymers used in this study were polystyrene, polymethylmethacrylate, and polyacrylonitrile. Each type of polymer-coated bead was prepared at different loading levels. Scanning electron microscopy was used to examine the gross change in the surface and elemental analysis used to determine the polymer loading. The adsorption properties of the polymeric pellicular supports were studied by determining the aforementioned thermodynamic quantities and by rate theory. The relative peak broadening was mentioned as a function of polymer type, loading, flow rate, and temperature. The chromatographic behavior of the selected molecular probes on the pellicular supports was sensitive to polymer type and loading. It was established that alumina can be modified with amines and pyridines and that a molecule possessing a nitrogen atom and a polymerization site can be used as an adhesive interface to chemically link polymeric phases to alumina. Currently, there are no commercially available modified aluminas. It has been demonstrated here that the preparation of such supports is feasible and can lead to chromatographically useful products.
6

The extinction by small aluminum particles from the far infrared to the vacuum ultraviolet

Rathmann, Janice Elaine January 1981 (has links)
No description available.
7

Improved corrosion protection of aluminum alloys by low temperature plasma interface engineering /

Reddy, Chandra M. January 1998 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1998. / Typescript. Vita. Includes bibliographical references (leaves 240-248). Also available on the Internet.
8

Improved corrosion protection of aluminum alloys by low temperature plasma interface engineering

Reddy, Chandra M. January 1998 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1998. / Typescript. Vita. Includes bibliographical references (leaves 240-248). Also available on the Internet.
9

An assessment of the corrosion protection offered to various steel and aluminium alloys by Al-Zn-In metal sprayed coatings.

Ford, Steven Michael. January 1992 (has links)
Steven Michael Ford, do hereby declare that this thesis is my own unaided work. This thesis has not been submitted in part or in full at this or any other university. This report is submitted in fulfilment of the degree of Master of Science in Engineering at the University of the Witwatersrand. / Aluminium, although often possessing adequate strength and toughness for a specific application, may be deemed unsuitable due to a less than satisfactory corrosion resistance. This unacceptable behaviour is especially prominent in the local mining industry where aluminium alloys corrode severely in the high chloride and sulphate containing waters. Of notable importance and the major motivating force for this research was the historically poor perfomance of aluminium alloy mine cages, which are suited to the task excepting for their unsatisfactory corrosion resistance. Of general importance however, is that the mining sector in South Africa represents a sizeable portion of the economy and could thus become a much greater consumer of aluminium if the metal's corrosion resistance could be improving Apart from varying the composition of the alloy, the other basic technique of increasing a metal's resistance to an environment is by applying a coating of some sort. This research looks into the use of aluminium-based metal sprayed coatings as a form of protection for various aluminium and steel substrate alloys. The purpose of a metal sprayed layer is not merely to isolate the substrate from the environment, hut also to act as a sacrificial anode at regions where the substrate is exposed. Previous work suggested that alloys of aluminium/zinc/indium produced excellent sacrificial anodes and were thus selected for this research. The zinc and indium were always alloyed with pure aluminium, with the percentage zinc varying between 0 and 12%. All the coating alloys were sprayed on a AA6261 and AA5083 aluminium alloys, a metal matrix composite and a mild steel alloy, Various electrochemical and immersion trials were then carried out in several synthetic mine waters and other corrosive media. The basic conclusion to be drawn from the results achieved is that the optimum coating for a particular substrate alloy is the one that provides the greatest potential difference between it and the substrate, while still lasting the required lifetime of the component. The reason for this is that the greater the potential difference, the better the sacrificial protection and hence the better the protection offered to any exposed areas on the surface. The fact that the coating corrodes away with time means that a balance must be found between sacrificial behaviour and required lifetime. / Andrew Chakane 2018
10

Corrosion behaviour of aluminised steel and conventional alloys in simulated aluminium smelting cell environments

Xu, Nan, Materials Science & Engineering, Faculty of Science, UNSW January 2002 (has links)
Aluminium smelting is a high temperature electrometallurgical process, which suffers considerable inefficiencies in power utilization and equipment maintenance. Aluminium smelting cell works in the extreme environments that contain extraordinarily aggressive gases, such as HF, CO and SO2. Mild steel used as a structural material in the aluminium industry, can be catastrophically corroded or oxidized in these conditions. This project was mainly concerned with extending the lifetime of metal structures installed immediately above the aluminium smelting cells. An aluminium-rich coating was developed on low carbon steel A06 using pack cementation technique. Yttria (Y2O3) was also used to improve the corrosion resistance of coating. Kinetics of the coating formation were studied. XRD, FESEM and FIB were employed to investigate the phase constitution and the surface morphology. Together with other potentially competitive materials, aluminium-rich coating was evaluated in simulated plant environments. Results from the long time (up to 2500h) isothermal oxidation of materials at high temperature (800??C) in air showed that the oxidation resistance of coated A06 is close to that of stainless steel 304 and even better than SS304 in cyclic oxidation tests. Coated A06 was also found to have the best sulfidation resistance among the materials tested in the gas mixture contains SO2 at 800??C. Related kinetics and mechanisms were also studied. The superior corrosion resistance of the coated A06 is attributed to the slow growing alpha-Al2O3 formed. Low temperature corrosion tests were undertaken in the gas mixtures containing air, H2O, HCl and SO2 at 400??C. Together with SS304 and 253MA, coated A06 showed excellent corrosion resistance in all the conditions. The ranking of the top three materials for corrosion resistance is: 253MA, coated A06 and SS304. It is believed that aluminised A06 is an ideal and economical replacement material in the severe corrosive aluminium smelting cell environment.

Page generated in 0.2855 seconds