• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Remodeling of the pulmonary microenvironment controls transforming growth factor-beta activation and alveolar type II epithelial to mesenchymal transition

Dysart, Marilyn Markowski 08 June 2015 (has links)
Pulmonary fibrosis is a potentially deadly pathology characterized by excessive deposition of extracellular matrix (ECM), increased tissue stiffness, and loss of tissue structure and function. Recent evidence has suggested epithelial to mesenchymal transition (EMT), the transdifferentiation of an epithelial cell into a mesenchymal fibroblast, is one mechanism that results in the accumulation of myofibroblasts and excessive deposition of ECM. EMT is a highly orchestrated process involving the integration of biochemical signals from specific integrin mediated interactions with ECM proteins and soluble growth factors including TGFβ. TGFβ, a potent inducer of EMT, can be activated by cell contraction mediated mechanical release of the growth factor from a macromolecular latent complex. Therefore, TGFβ activity and subsequent EMT may be influenced by both the biochemical composition and biophysical state of the surrounding ECM. Based on these knowns it was first investigated how changes in the biochemical composition of the matrix and changes in tissue rigidity together modulate EMT due to changes in epithelial cell contraction and TGFβ activation. Here we show that integrin specific interactions with fibronectin (Fn) variants displaying both the RGD and PHSRN binding sites facilitate cell binding through α3β1 and α5β1 integrins, and that these interactions maintain an epithelial phenotype despite engagement of increased tissue rigidities. Conversely, Fn fragments that facilitate cell binding through αv integrins drive TGFβ activation and subsequent EMT even while engaging soft underlying substrates. Adding to the complexity of studying mechanisms that contribute to pulmonary fibrosis, is exposure of the lung to injuries from environmental particulates. Therefore, we investigated how EMT is altered in response to particulate matter (PM). Here we show that PM exposure further drives TGFβ activation, EMT, and increases intracellular levels of reactive oxygen species (ROS). Additionally, cells binding the ECM through α5β1 and α3β1 integrins only partially recover an epithelial phenotype, suggesting ROS may be a secondary driver of TGFβ and EMT. Taken together these results suggest dynamic changes to the ECM microenvironment are major contributors to the control of EMT responses and provide insights into the design of biomaterial-based microenvironments for control of epithelial cell phenotype.
2

Generation of mature type II alveolar epithelial cells from human pluripotent stem cells

Jacob, Anjali 01 November 2017 (has links)
Tissues arising late in evolutionary time, such as lung alveoli that are unique to air breathing organisms, have been challenging to generate in vitro from pluripotent stem cells (PSCs), in part because there are limited lower organism model systems available to provide the necessary developmental roadmaps to guide in vitro differentiation. Furthermore, pulmonary alveolar epithelial type II cell (AEC2) dysfunction has been implicated as a primary cause of pathogenesis in many poorly understood lung diseases that lack effective therapies, including interstitial lung disease (ILD) and emphysema. Here we report the successful directed differentiation in vitro of human PSCs into AEC2s, the facultative progenitors of lung alveoli. Using gene editing to engineer multicolored fluorescent reporter PSC lines (NKX2-1GFP;SFTPCtdTomato), we track and purify human SFTPC+ alveolar progenitors as they emerge from NKX2-1+ endodermal developmental precursors in response to stimulation of Wnt and FGF signaling. Purified PSC-derived SFTPC+ cells are able to form monolayered epithelial spheres (“alveolospheres”) in 3D cultures without the need for mesenchymal co-culture support, exhibit extensive self-renewal capacity, and display additional canonical AEC2 functional capacities, including innate immune responsiveness, the production of lamellar bodies able to package surfactant, and the ability to undergo squamous cell differentiation while upregulating type 1 alveolar cell markers. Guided by time-series global transcriptomic profiling we find that AEC2 maturation involves downregulation of Wnt signaling activity, and the highest differentially expressed transcripts in the resulting SFTPC+ cells encode genes associated with lamellar body and surfactant biogenesis. Finally, we apply this novel model system to generate patient-specific AEC2s from induced PSCs (iPSCs) carrying homozygous surfactant mutations (SFTPB121ins2), and we employ footprint-free CRISPR-based gene editing to observe that correction of this genetic lesion restores surfactant processing in the cells responsible for their disease. Thus we provide an approach for disease modeling and future functional regeneration of a cell type unique to air-breathing organisms.

Page generated in 0.1111 seconds