• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 12
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The role of oxidative stress and cholesterol in animal models of Alzheimer's disease

Veurink, Gerald January 2009 (has links)
Alzheimer’s disease (AD) is the most commonly diagnosed form of dementia in the aged, and is characterised by a progressive decline in memory, language and other cognitive functions, together with deterioration in behavioural, emotional and social skills. The earliest clinical symptoms include episodic memory loss and dysnomia. This is followed by other signs of cortical impairment including apraxia, agnosia, and visuospatial impairment. In advanced stages, victims become mute, cannot walk and are incontinent; they therefore become totally dependent on carers. AD is the third leading cause of death in the aging population after heart disease and cancer. The incidence of AD doubles every 5 years in subjects between the ages of 65 and 85 years, affecting one in three by the age of 80. AD is characterised by the existence of intracellular and extracellular amyloid deposits in the brain. Extracellular amyloid deposits consist of plaques, whereas the deposits within and around blood vessels are referred to as cerebral amyloid angiopathy (CAA). Neurofibrillary tangles (NFT) are characteristically found in AD; however, they are also found in some other neurodegenerative disorders such as tuberose sclerosis, amyotrophic lateral sclerosis, parkinson-dementia complex and dementia pugilistica.
12

Cholinergic basal forebrain involvement in the acquisition of differential reinforcement of low rate responding tasks in rats

Corley, Sean Ryan 01 January 2005 (has links)
It was hypothesized that 192 IgG-saporin lesions of the basal forebrain cholinergic system (BFCS) would disrupt differential reinforcement of low rate (DRL) learning in an uncued DRL task, but would not impair acquisition and performance in the cued version of the task. Results suggest that BFCS lesions impair vigilance to the external cues despite continued practice in the cued DRL, whereas continuous attention to internally produced cues recovers with extended practice in the uncued DRL.

Page generated in 0.0703 seconds