Spelling suggestions: "subject:"alzheimer's disease.methodology"" "subject:"alzheimer's diseaseactivity""
1 |
Molecular signaling of neuronal apoptosis in beta-amyloid peptide neurotoxicitySuen, Ka-chun., 孫嘉俊. January 2003 (has links)
published_or_final_version / Anatomy / Doctoral / Doctor of Philosophy
|
2 |
Investigation of neuronal apoptosis and autophagy in beta-amyloid peptide toxicityCheung, Yuen-ting., 張婉婷. January 2009 (has links)
published_or_final_version / Anatomy / Doctoral / Doctor of Philosophy
|
3 |
Neurometabolic alterations after traumatic brain injury: Links to mitochondria-associated ER membranes and Alzheimer’s diseaseAgrawal, Rishi Raj January 2021 (has links)
Neurodegenerative diseases are highly multifaceted. Despite their heavy burden, treatment options are limited and our understanding of their molecular triggers even less so. In this thesis, I focus on the pathogenesis of Alzheimer’s Disease (AD) due to familial, sporadic and environmental causes. Previous research shows that early AD stages are characterized by upregulated functionality of mitochondria-associated endoplasmic reticulum (ER) membranes. These “MAM” domains of the ER are dynamic contacts between the ER and mitochondria distinguished by a unique lipid composition equivalent to a lipid raft. These sites cluster a specific set of metabolic enzymes that regulate cellular lipid uptake, trafficking and turnover. We find that cleavage of the amyloid precursor protein at MAM domains is intimately involved in MAM regulation through localization of its C-terminal fragment of 99 a.a., C99, to MAM regions. C99 upregulates MAM functionality by promoting cholesterol uptake and trafficking to the ER for esterification, observable in both familial and sporadic AD samples. Here, we recapitulated these phenotypes in a mouse model of an environmental AD trigger: traumatic brain injury (TBI). Through biochemical, transcriptional and lipidomic analyses, we observed MAM functionality to be upregulated following a single brain injury. This was determined by assessment of phospholipid synthesis and cholesterol esterification. This correlated with increased deposition of C99 in MAM domains as well as cell type-specific lipidomic alterations. Specifically, cholesterol esterification was predominant in microglia, triglyceride elevations were predominant in microglia and astrocytes, and polyunsaturated phospholipid elevations were predominant in neurons. We hypothesize that, in the acute phase, MAM upregulation serves to promote lipid synthesis for tissue repair. However, if these phenotypes are sustained (such as after multiple injuries), cognitive functions dependent on neuronal functionality could become compromised. Altogether, we propose that the induction of AD pathogenesis following brain injury may arise from chronic upregulation of MAM activities. This work advances our understanding of neurodegenerative disease etiology.
|
4 |
The contribution of 14-3-3 proteins to protein aggregate homeostasisHerod, Sarah Grace January 2022 (has links)
Amyloids are fibrous protein aggregates associated with age-related diseases, such as Alzheimer’s disease and Parkinson’s disease. The role of amyloids in the etiology of neurodegeneration is debatable, but genetic and molecular evidence supports a causative relationship between amyloidogenesis and disease. Amyloidogenic proteins are constitutively expressed throughout the lifespan of an organism, and yet only become pathogenic in certain situations. This led to a hunt to understand how amyloidogenic proteins could be modified in order to become aggregation-prone. One possibility that has garnered attention is phosphorylation, primarily because several amyloid aggregates such as tau and α-synuclein are often highly phosphorylated in disease. However, the contribution of phosphorylation to disease progression remains unclear.While amyloid aggregates are typically described as irreversible and pathogenic, some cells utilize reversible amyloid-like structures that serve important functions.
One example is the RNA-binding protein Rim4 which forms amyloid-like assemblies that are essential for translational control during S. cerevisiae meiosis. If Rim4 is unable to translationally repress its mRNA targets, cells mis-segregate chromosomes during meiosis resulting in aneuploid gametes. Importantly, Rim4 amyloid-like assemblies are disassembled in a phosphorylation-dependent manner at meiosis II onset which allows previously repressed transcripts to become translated.
In Chapter 1, I describe the significance and complexity of protein phosphorylation as it relates to disease-associated amyloids and why Rim4 is an ideal model for studying this phenomenon.
The objective of this thesis is to examine the mechanisms underlying clearance of Rim4 amyloid-like assemblies. The work described in Chapter 2 focuses on identifying co-factors that mediate clearance of amyloid-like assemblies in a physiological setting. I demonstrate that yeast 14-3-3 proteins, Bmh1 and Bmh2, bind to Rim4 assemblies and facilitate their subsequent phosphorylation and timely clearance. Furthermore, distinct 14-3-3 proteins play non-redundant roles in facilitating phosphorylation and clearance of amyloid-like Rim4.
In Chapter 3, I explore the mechanism underlying 14-3-3 contribution to Rim4 amyloid-like disassembly. I find that 14-3-3 proteins are critical for the interaction between Rim4 and its primary kinase Ime2, thus facilitating downstream multi-site phosphorylation of Rim4. In Chapter 4, I explore additional roles for 14-3-3 proteins in general protein aggregate homeostasis. I find that 14-3-3 mutants exhibit greater protein aggregate burdens. Additionally, 14-3-3 mutants accumulate ubiquitinated proteins and are sensitized to proteasome mutations, suggesting a role for 14-3-3 proteins in proteasome function. Collectively, the studies described in this thesis support a protective role for 14-3-3 proteins in protein aggregation that may have implications for amyloid biology in human disease.
|
5 |
Understanding the molecular, cellular, and circuit defects characterizing the early stages of Alzheimer’s diseaseVirga, Daniel Michael January 2023 (has links)
One of the most foundational and personal philosophical questions one can ask is what makes you, you? In large part, you are made up of your relationships, experiences, and memories. The hippocampus, a brain region which is critical for the formation of memories, has been the focus of neuroscience research for decades due partially to this function, which is foundational to our individuality. In Alzheimer’s disease (AD), one of the most common and well-researched neurodegenerative diseases in the world, the hippocampus is one of the earliest targets. Despite extensive work on AD, we still lack a coherent understanding of what is causing the disease, the mechanisms by which it is causing neuronal dysfunction and death within the hippocampus and other brain regions, and how it ultimately causes deficits in cognition and behavior, leading to an erosion of our selves.
In this thesis, I explore three independent but related questions: 1) what molecular mechanisms are causing early synaptic loss in AD, specifically within the hippocampus, 2) what molecular effectors are responsible for establishing and maintaining intracellular architecture in hippocampal neurons, which are exploited in early AD, and 3) how and when does the hippocampal circuit dysfunction in AD progression?
Using a variety of experimental techniques, ranging from in utero and ex utero electroporation, primary murine and human neuronal cell culture, longitudinal confocal microscopy, immunohistochemistry, biochemistry, cell and molecular biology, in vivo two-photon calcium imaging, and behavioral assays, I have found that, within CA1 of the hippocampus, synapse loss requires degradation of the dendritic mitochondrial network, activity and input specificity are driving mitochondrial compartmentalization within CA1 neurons through the same pathway that is aberrantly overactivated in AD, and the hippocampal circuit is overly rigid in encoding the environment as the disease progresses.
|
Page generated in 0.0596 seconds