• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

<b>Using ambient noise tomography to reveal tectonic processes in the southern Cascadia forearc</b>

Brandon J Herr (19200814) 24 July 2024 (has links)
<p dir="ltr">The Cascadia subduction zone features many along-strike variations in geophysical signatures that appear independent of properties in the subducting Juan de Fuca plate. Past studies have hypothesized that controls on these variations, namely subcretion, seem linked to overriding plate characteristics but may be influenced by characteristics of the downgoing slab as well. Nowhere is this more apparent than in southern Cascadia, which features the highest seismogenesis, broadest forearc topography, and lowest Bouguer gravity along the Cascadia margin. Additionally, the northward migration of deformation related to the San Andreas fault’s evolution and potential subslab buoyancies introduce further complexities making it difficult to parse contributions of tectonic processes to individual geophysical observations. To better understand contributions from Cascadia subduction and San Andreas evolution on tectonic processes, 60 Magseis Fairview nodal seismometers were deployed in southern Cascadia (Klamath Mountains) between April and May of 2020. We perform ambient noise tomography using Rayleigh and Love waves to constrain radial anisotropy and reveal seismic characteristics in the forearc. We find low VSV (<3.4 km/s) in the lower crust of the forearc consistent with previous studies. This is paired with high (>10%) positive radial anisotropy suggesting these materials are dominated by (sub)horizontal fabrics. We also observe relatively high VSV and VSH and negative radial anisotropy (~ -10%) in the upper crust of the forearc to ~10 km depth. These results suggest that the upper crust, which is dominated by the Klamath terrane, is characterized by (sub-vertical) deformational fabrics, likely related to brittle deformation superimposed on the accretionary history of the Klamath terrane, while the lower crust shows fabrics consistent with what would be expected due to basal accretion of oceanic crust (e.g, sedimentary rocks with or without basaltic slivers). The correlation of positive radial anisotropy with low shear-wave velocities (~3.4 km/s), low Bouguer gravity, high conductivity, and high rates of seismogenic activity (LFEs, tremor distribution, and episodic slow slip events) suggest that this basally accreted material may be infiltrated by fluids derived from the downgoing oceanic lithosphere.</p>
2

Exploring the Earth's subsurface with virtual seismic sources and receivers

Nicolson, Heather Johan January 2011 (has links)
Traditional methods of imaging the Earth’s subsurface using seismic waves require an identifiable, impulsive source of seismic energy, for example an earthquake or explosive source. Naturally occurring, ambient seismic waves form an ever-present source of energy that is conventionally regarded as unusable since it is not impulsive. As such it is generally removed from seismic data and subsequent analysis. A new method known as seismic interferometry can be used to extract useful information about the Earth’s subsurface from the ambient noise wavefield. Consequently, seismic interferometry is an important new tool for exploring areas which are otherwise seismically quiet, such as the British Isles in which there are relatively few strong earthquakes. One of the possible applications of seismic interferometry is the ambient noise tomography method (ANT). ANT is a way of using interferometry to image subsurface seismic velocity variations using seismic (surface) waves extracted from the background ambient vibrations of the Earth. To date, ANT has been used to successfully image the Earth’s crust and upper-mantle on regional and continental scales in many locations and has the power to resolve major geological features such as sedimentary basins and igneous and metamorphic cores. In this thesis I provide a review of seismic interferometry and ANT and apply these methods to image the subsurface of north-west Scotland and the British Isles. I show that the seismic interferometry method works well within the British Isles and illustrate the usefulness of the method in seismically quiet areas by presenting the first surface wave group velocity maps of the Scottish Highlands and across the British Isles using only ambient seismic noise. In the Scottish Highlands, these maps show low velocity anomalies in sedimentary basins such as the Moray Firth and high velocity anomalies in igneous and metamorphic centres such as the Lewisian complex. They also suggest that the Moho shallows from south to north across Scotland, which agrees with previous geophysical studies in the region. Rayleigh wave velocity maps from ambient seismic noise across the British Isles for the upper and mid-crust show low velocities in sedimentary basins such as the Midland Valley, the Irish Sea and the Wessex Basin. High velocity anomalies occur predominantly in areas of igneous and metamorphic rock such as the Scottish Highlands, the Southern Uplands, North-West Wales and Cornwall. In the lower crust/upper mantle, the Rayleigh wave maps show higher velocities in the west and lower velocities in the east, suggesting that the Moho shallows generally from east to west across Britain. The extent of the region of higher velocity correlates well with the locations of British earthquakes, agreeing with previous studies that suggest British seismicity might be influenced by a mantle upwelling beneath the west of the British Isles. Until the work described in Chapter 6 of this thesis was undertaken in 2009, seismic interferometry was concerned with cross-correlating recordings at two receivers due to a surrounding boundary of sources, then stacking the cross-correlations to construct the inter-receiver Green’s function. A key element of seismic wave propagation is that of source-receiver reciprocity i.e. the same wavefield will be recorded if its source and receiver locations and component orientations are reversed. By taking the reciprocal of its usual form, in this thesis I show that the impulsive-source form of interferometry can also be used in the opposite sense: to turn any energy source into a virtual sensor. This new method is demonstrated by turning earthquakes in Alaska and south-west USA into virtual seismometers located beneath the Earth’s surface.
3

Inversion conjointe géophysique appliquée à l'exploration en géothermie profonde dans le Massif Central / Geophysical joint inversion applied to deep geothermal exploration in french Massif Central

Ars, Jean-Michel 01 June 2018 (has links)
Le développement de l’énergie géothermique a conduit à l’exploitation de ressources établies dans des contextes géologiques et géodynamiques très variés. L’exploration géophysique de ces réservoirs complexes nécessite l’utilisation de plusieurs méthodes d’imagerie complémentaire. Ce travail de thèse porte sur l’exploration d’une ressource géothermique située en contexte de socle fracturé dans le Massif Central français par magnétotellurique, tomographie de bruit ambiant et gravimétrie.La magnétotellurique est une méthode d’imagerie 3D résolvante qui est sensible à la présence d’eau et aux argiles d’altération hydrothermale mais limitée par sa couverture spatiale. La tomographie de bruit sismique présente une bonne résolution verticale mais ne résout pas les variations horizontales de vitesse. Cette méthode est sensible aux variations des propriétés mécaniques des roches et donc aux milieux fracturés. Enfin la gravimétrie apporte une contrainte sur les variations lithologiques et possède une bonne résolution latérale mais une faible résolution verticale.Nous présentons une méthode d’inversion conjointe des données sismiques et gravimétriques sous contrainte d’un modèle de résistivité obtenu par inversion magnétotellurique indépendante. L’inversion conjointe nécessite de définir des couplages entre modèles. Par absence de connaissance a priori de relations pétrophysiques, nous avons couplé les modèles de densité, de résistivité et de vitesse avec une loi qui contraint les paramètres à être corrélés en moyenne. Cette stratégie vise à faire ressortir des relations caractéristiques des objets géologiques de la ressource géothermique.Cette méthodologie d’inversion conjointe a été testée sur des modèles synthétiques. L’application aux données réelles acquises dans le Massif Central a permis de définir une zone en profondeur de forte corrélation interprétée comme la transition ductile fragile. La partie intermédiaire des modèles, plus homogène, permet de distinguer différentes unités géologiques séparées par une zone de faille. Enfin la partie superficielle se distingue par une forte hétérogénéité des paramètres résultants probablement de processus d’altération de surface. / The development of geothermal energy has led to the exploitation of resources established in varied geological and geodynamic contexts. Geophysical exploration of these complex reservoirs requires the use of several complementary imaging methods. This PhD thesis focuses on the exploration of a geothermal resource located within the fractured basement in the French Massif Central using magnetotelluric, ambient noise tomography and gravimetry. Magnetotelluric is a 3D imaging method with a good resolution power that is sensitive to the presence of water and hydrothermal weathering clays but is limited by its spatial coverage. Seismic noise tomography has a good vertical resolution but does not resolve well horizontal velocity variations. This method is sensitive to variations of the mechanical properties of rocks and thus to fractured media. Finally gravimetry brings constraint on the lithological variations and has a good lateral resolution but lacks vertical resolution.We present a method of joint inversion of seismic and gravimetric data under the constraint of a resistivity model obtained by independent magnetotelluric inversion. Joint inversion requires defining model couplings. By lack of prior knowledge of petrophysical relationships, we have coupled the density, resistivity and velocity models with a law that constraints the parameters to be correlated on average.This strategy aims to bring out the characteristic relationships of the geological objects of the geothermal resource. This joint inversion methodology has been tested on synthetic models. The application to the real data acquired in the Massif Central has made it possible to define a deep zone of high correlation interpreted as the fragile ductile transition. The intermediate part of the models, more homogeneous, allows to distinguish different geological units separated by a fault zone. Finally the superficial part is distinguished by strong heterogeneity of the parameters resulting probably from surface alteration process.
4

Trojrozměrná tomografie Českého masivu ze seismického šumu / Three-dimensional ambient noise tomography of the Bohemian Massif

Valentová, Ľubica January 2018 (has links)
We have performed 3D ambient noise tomography of the Bohemian Massif. We invert adopted inter-station dispersion curves of both Love and Rayleigh waves in periods 4-20 s, which were extracted from ambient noise cross-correlations, using a two-step approach. In the first step, the inter-station dispersion curves are localized for each period into the so-called dispersion maps. To account for finite-frequency effects, gradient method employing Fréchet kernels is used. Assuming membrane wave approximation of the surface wave propagation at each period, the kernels were calculated using the adjoint method. To reduce the effect of data noise, the kernels were regularized by Gaussian smoothing. The proper level of regularization is assessed on synthetic tests. In the second step, the phase-velocity dispersion maps are inverted into a 3D S-wave velocity model using the Bayesian approach. The posterior probability density function describing the solution is sampled by more than one million models obtained by Monte-Carlo approach (parallel tempering). The calculated variance of the model shows that the well resolved part corresponds to the upper crust (i.e., upper 20 km). The mean velocity model contains mainly large scale structures that show good correlation with the main geologic domains of the Bohemian...
5

The structure and seismicity of Icelandic rifts

Green, Robert George January 2016 (has links)
Three-fifths of the Earth’s crust has been built at oceanic spreading centres in the last 160 million years. To explore crustal extension processes and the architecture of these constructive plate boundaries I have studied the oceanic rift in Iceland. Here the Mid Atlantic Ridge is anomalously elevated above sea level and thus easier to instrument. I have deployed and operated a dense network of seismometers in the remote volcanic highlands in central Iceland, and used the passive seismic data collected from this network to explore crustal structure and volcanic processes in the extensional rift zones. My analysis of persistent seismicity located in an intervening region between individual spreading segments, uniquely records the segmentation of plate spreading on the scale of individual volcanic systems. Precise location and characterisation of micro-earthquakes identifies a series of faults subparallel to the rift fabric, and source mechanisms define left-lateral strike-slip motion on these faults. This extremely high quality microseismic data reveals transform motion being accommodated by bookshelf faulting in a concentrated region between two such volcanic systems, providing evidence for the localisation of spreading in the discrete volcanic systems. While transform motion between spreading centres appears to be accommodated on a continuous basis, the extension of the brittle upper crust within the spreading centres occurs episodically during rifting events. Our local seismic network fortuitously recorded such a rifting episode in August 2014, during which the opening of a 5 metre wide dyke triggered a huge increase in seismicity across large areas of the rift zone. Stress-seismicity-rate modelling of this triggered seismicity, along with geodetic constraints on the deformation, provided a remarkable opportunity with which it was possible to prove the existence of stress-shadowing, a challenge which has eluded earthquake seismologists for decades. Using the excellent coverage of our extended seismic network I have also generated a new high resolution image of the regional crustal seismic structure using surface waves extracted from ambient seismic noise. The structure reveals low seismic velocities which are closely correlated with the volcanic rift zones, and faster wavespeeds in the older and non-volcanically active Tertiary crust. The strongest anomalies are seen in the north-west of the Vatnajökull icecap, at the location of thickest crust and inferred centre of the underlying mantle plume. Inversion for shear wave velocity structure shows high velocity-gradients in the top 10 km, defining a thickened extrusive upper crust in Iceland compared to standard oceanic crust, where it is normally 2–3 km thick. Below this, the shear wave velocity structure reveals a distinct low-velocity zone in the mid crust between 14–20 km depth, which is widespread across Iceland and shallows into the active volcanic rifts. This extensive feature suggests high mid-crustal temperatures and a high temperature-gradient between the extrusives of the upper crust and the intrusive mid-to-lower crust in Iceland.
6

Imaging major Canadian sedimentary basins and their adjacent structures using ambient seismic noise (and other applications of seismic noise)

Kuponiyi, Ayodeji Paul 05 May 2021 (has links)
Over a decade ago, it was discovered that the earth’s natural seismic wavefields, propagating as seismic noise, can be processed using correlation methods to produce surface waves, similar to those generated by earthquakes. This discovery represents a paradigm shift in seismology and has led to several tomographic studies of earth structures, at different scales and resolutions, in previously difficult-to-study areas around the world. This PhD dissertation presents research results on multi-scale and multi-purpose applications of ambient seismic noise wavefields under three topics: (1) Imaging of sedimentary basins and sub-basin structures in eastern and western Canada using ambient seismic noise, (2) Combining measurements from ambient seismic noise with earthquake datasets for imaging crustal and mantle structures, and (3) Temporal variation in cultural seismic noise and noise correlation functions (NCFs) during the COVID-19 lockdown in Canada. The first topic involved imaging the sedimentary basins in eastern and western Canada using shear wave velocities derived from ambient noise group velocities. The results show that the basins are characterized by varying depths, with maximums along the studied cross-sections in excess of 10 km, in eastern and western Canada. Characteristics of accreted terranes in eastern and western Canada are also revealed in the results. A seismically distinct basement is imaged in eastern Canada and is interpreted to be a vestige of the western African crust trapped beneath eastern Canada at the opening of the Atlantic Ocean. In western Canada, the 3D variation of the Moho and sedimentary basin depths is imaged. The thickest sediments in eastern Canada are found beneath the Queen Charlotte, Williston and the Alberta Deep basins, while the Moho is the deepest beneath the Williston basin and parts of Alberta basin and northern British Columbia. For the second topic, I worked on improving the seismological methodology to construct broadband (period from 2 to 220 s) dispersion curves by combining the dispersion measurements derived from ambient seismic noise with those from earthquakes. The broadband dispersion curves allow for imaging earth structures spanning the shallow crust to the upper mantle. For the third topic, I used ambient seismic data from the earlier stages of the COVID-19 pandemic to study the temporal variation of seismic power spectra and the potential impacts of COVID-19 lockdown on ambient NCFs in four cities in eastern and western Canada. The results show mean seismic power drops of 24% and 17% during the lockdown in eastern Canada, near Montreal and Ottawa respectively and reductions of 27% and 17% near Victoria and Sidney respectively. NCF signal quality within the secondary microseism band reached maximum before the lockdown, minimum during lockdown and at intermediate levels during the gradual reopening phase for the western Canada station pair. / Graduate

Page generated in 0.0683 seconds