• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Convergence of Averages in Ergodic Theory

Butkevich, Sergey G. 11 October 2001 (has links)
No description available.
2

Automorphismes et compactifications d’immeubles : moyennabilité et action sur le bord / Automorphisms and compactifications of buildings : amenability and action on the boundary

Lécureux, Jean 04 December 2009 (has links)
Cette thèse se propose d'étudier sous divers points de vue les groupes d'automorphismes d'immeubles. Un de ses objectifs est de mettre en valeur les différences autant que les analogies entre les immeubles affines et non affines. Pour appuyer cette dichotomie, on y démontre que les groupes d'automorphismes d'immeubles non affines n'ont jamais de paire de Gelfand, contrairement aux immeubles affines. Dans l'autre sens, pour souligner l'analogie entre immeubles affines et non affines, on définit une nouvelle notion de bord combinatoire d'un immeuble. Dans le cas des immeubles affines, ce bord s'identifie au bord polyédral. On relie la construction de ce bord à d'autres constructions déjà existantes, par exemple, la compactification de Busemann du graphe des chambres. La compactification combinatoire est également isomorphe à la compactification par la topologie de Chabauty de l'ensemble des chambres, sous des hypothèses de transitivité. On relie aussi le bord combinatoire à un autre espace, généralisant une construction de F. Karpelevic pour les espaces symétriques : celle du bord raffiné d'un espace CAT(0).On démontre alors que les points du bord paramètrent les sous-groupes moyennables maximaux de l'immeuble, à indice fini près. Enfin, on prouve que l'action du groupe d'automorphismes d'un immeuble localement fini sur le bord combinatoire de ce dernier est moyennable, fournissant ainsi des résolutions en cohomologie bornée et des applications bord explicites. Ceci donne aussi une nouvelle preuve que ces groupes satisfont la conjecture de Novikov. / The object of this thesis is the study, from different point of views, of automorphism groups of buildings. One of its objectives is to highlight the differences as well as the analogies between affine and non-affine buildings. In order to support this dichotomy, we prove that automorphism groups of non-affine buildings never have a Gelfand pair, contrarily to affine buildings.In the other direction, the analogy between affine and non-affine buildings is supported by the new construction of a combinatorial boundary of a building. In the affine case, this boundary is in fact the polyhedral boundary. We connect the construction of this boundary to other compactifications, such as the Busemann compactification of the graph of chambers. The combinatorial compactification is also isomorphic to the group-theoretic compactification, which embeds the set of chambers into the set of closed subgroups of the automorphism group. We also connect the combinatorial boundary to another space, which generalises a construction of F. Karpelevic for symmetric spaces : the refined boundary of a CAT(0) space.We prove that the maximal amenable subgroups of the automorphism group are, up to finite index, parametrised by the points of the boundary. Finally, we prove that the action of the automorphism group of a locally finite building on its combinatorial boundary is amenable, thus providing resolutions in bounded cohomology and boundary maps. This also gives a new proof that these groups satisfy the Novikov conjecture.
3

The Integrated Density of States for Operators on Groups

Schwarzenberger, Fabian 18 September 2013 (has links) (PDF)
This thesis is devoted to the study of operators on discrete structures. The operators are supposed to be self-adjoint and obey a certain translation invariance property. The discrete structures are given as Cayley graphs via finitely generated groups. Here, sofic groups and amenable groups are in the center of our considerations. Note that every finitely generated amenable group is sofic. We investigate the spectrum of a discrete self-adjoint operator by studying a sequence of finite dimensional analogues of these operators. In the setting of amenable groups we obtain these approximating operators by restricting the operator in question to finite subsets Qn , n ∈ N. These finite dimensional operators are self-adjoint and therefore admit a well-defined normalized eigenvalue counting function. The limit of the normalized eigenvalue counting functions when |Qn | → ∞ (if it exists) is called the integrated density of states (IDS). It is a distribution function of a probability measure encoding the distribution of the spectrum of the operator in question on the real axis. In this thesis, we prove the existence of the IDS in various geometric settings and for different types of operators. The models we consider include deterministic as well as random situations. Depending on the specific setting, we prove existence of the IDS as a weak limit of distribution functions or even as a uniform limit. Moreover, in certain situations we are able to express the IDS via a semi-explicit formula using the trace of the spectral projection of the original operator. This is sometimes referred to as the validity of the Pastur-Shubin trace formula. In the most general geometric setting we study, the operators are defined on Cayley graphs of sofic groups. Here we prove weak convergence of the eigenvalue counting functions and verify the validity of the Pastur-Shubin trace formula for random and non-random operators . These results apply to operators which not necessarily bounded or of finite hopping range. The methods are based on resolvent techniques. This theory is established without having an ergodic theorem for sofic groups at hand. Note that ergodic theory is the usual tool used in the proof of convergence results of this type. Specifying to operators on amenable groups we are able to prove stronger results. In the discrete case, we show that the IDS exists uniformly for a certain class of finite hopping range operators. This is obtained by using a Banach space-valued ergodic theorem. We show that this applies to eigenvalue counting functions, which implies their convergence with respect to the Banach space norm, in this case the supremum norm. Thus, the heart of this theory is the verification of the Banach space-valued ergodic theorem. Proceeding in two steps we first prove this result for so-called ST-amenable groups. Then, using results from the theory of ε-quasi tilings, we prove a version of the Banach space-valued ergodic theorem which is valid for all amenable groups. Focusing on random operators on amenable groups, we prove uniform existence of the IDS without the assumption that the operator needs to be of finite hopping range or bounded. Moreover, we verify the Pastur-Shubin trace formula. Here we present different techniques. First we show uniform convergence of the normalized eigenvalue counting functions adapting the technique of the Banach space-valued ergodic theorem from the deterministic setting. In a second approach we use weak convergence of the eigenvalue counting functions and additionally obtain control over the convergence at the jumps of the IDS. These ingredients are applied to verify uniform existence of the IDS. In both situations we employ results from the theory of large deviations, in order to deal with long-range interactions.
4

The Integrated Density of States for Operators on Groups

Schwarzenberger, Fabian 06 September 2013 (has links)
This thesis is devoted to the study of operators on discrete structures. The operators are supposed to be self-adjoint and obey a certain translation invariance property. The discrete structures are given as Cayley graphs via finitely generated groups. Here, sofic groups and amenable groups are in the center of our considerations. Note that every finitely generated amenable group is sofic. We investigate the spectrum of a discrete self-adjoint operator by studying a sequence of finite dimensional analogues of these operators. In the setting of amenable groups we obtain these approximating operators by restricting the operator in question to finite subsets Qn , n ∈ N. These finite dimensional operators are self-adjoint and therefore admit a well-defined normalized eigenvalue counting function. The limit of the normalized eigenvalue counting functions when |Qn | → ∞ (if it exists) is called the integrated density of states (IDS). It is a distribution function of a probability measure encoding the distribution of the spectrum of the operator in question on the real axis. In this thesis, we prove the existence of the IDS in various geometric settings and for different types of operators. The models we consider include deterministic as well as random situations. Depending on the specific setting, we prove existence of the IDS as a weak limit of distribution functions or even as a uniform limit. Moreover, in certain situations we are able to express the IDS via a semi-explicit formula using the trace of the spectral projection of the original operator. This is sometimes referred to as the validity of the Pastur-Shubin trace formula. In the most general geometric setting we study, the operators are defined on Cayley graphs of sofic groups. Here we prove weak convergence of the eigenvalue counting functions and verify the validity of the Pastur-Shubin trace formula for random and non-random operators . These results apply to operators which not necessarily bounded or of finite hopping range. The methods are based on resolvent techniques. This theory is established without having an ergodic theorem for sofic groups at hand. Note that ergodic theory is the usual tool used in the proof of convergence results of this type. Specifying to operators on amenable groups we are able to prove stronger results. In the discrete case, we show that the IDS exists uniformly for a certain class of finite hopping range operators. This is obtained by using a Banach space-valued ergodic theorem. We show that this applies to eigenvalue counting functions, which implies their convergence with respect to the Banach space norm, in this case the supremum norm. Thus, the heart of this theory is the verification of the Banach space-valued ergodic theorem. Proceeding in two steps we first prove this result for so-called ST-amenable groups. Then, using results from the theory of ε-quasi tilings, we prove a version of the Banach space-valued ergodic theorem which is valid for all amenable groups. Focusing on random operators on amenable groups, we prove uniform existence of the IDS without the assumption that the operator needs to be of finite hopping range or bounded. Moreover, we verify the Pastur-Shubin trace formula. Here we present different techniques. First we show uniform convergence of the normalized eigenvalue counting functions adapting the technique of the Banach space-valued ergodic theorem from the deterministic setting. In a second approach we use weak convergence of the eigenvalue counting functions and additionally obtain control over the convergence at the jumps of the IDS. These ingredients are applied to verify uniform existence of the IDS. In both situations we employ results from the theory of large deviations, in order to deal with long-range interactions.

Page generated in 0.0666 seconds