• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Utilizing Amine-Thiol Molecular Precursors for Ag2ZnSnSe4 Thin Films

Anna Murray (9175604) 29 July 2020 (has links)
<p>Thin film photovoltaic materials have garnered much interest recently due to their processability in addition to good properties for conversion of solar photons to usable energy. Amine-thiol chemistry has shown the ability to produce solution processed materials such as Cu<sub>2</sub>ZnSn(S,Se)<sub>4</sub> (CZTSSe), a thin film absorber composed of earth abundant metals. Using similar solution processing methods as those used to produce CZTS, we wish to synthesize a phase pure solution processed material from molecular precursors of metals and metal chalcogenides into an Ag<sub>2</sub>ZnSnSe<sub>4</sub> absorber which lacks the electronic defects that plague CZTSSe. Additionally, we will utilize the reactive dissolution of metal in amine-thiol solution chemistry for a more detailed understanding of how metal-sulfur complexes form and then decompose into films, to gain insight about the conditions that produce stable solutions and high quality films for a better ability to optimize processing conditions. </p><p><br></p><p>We find we are able to individually dissolve zinc metal, tin metal, and silver sulfide precursors to produce solutions of metal thiolate complexes. Based on results from electrospray ionization mass spectrometry (ESI-MS), proton nuclear magnetic resonance (<sup>1</sup>H-NMR), and extended X-ray absorption fine structure (EXAFS)/ X-ray absorption near edge spectra (XANES) we propose that these structures contain thiolate molecules coordinated with Ag, Zn, and Sn in the +1, +2, and +2 oxidation states respectively. However, mixing these produces an AZTS solution which is only stable for 3 hours, due to a redox reaction between Ag<sup>+</sup> and Sn<sup>2+</sup> which forms Sn<sup>4+</sup> and insoluble Ag metal. To solve this, we synthesize SnS<sub>2</sub> and show this produces a different Sn-thiolate complex with fully oxidized Sn<sup>4+</sup>. This is then used to produce the first stable AZTS solution, an essential step to fabricating reproducible films. We use this AZTS solution to fabricate films containing AZTS, and selenize these films in a tube furnace to produce films which contain AZTSe as well as secondary phases. We then use rapid thermal processing furnace to remove some of these secondary phases, and discuss ways to further improve our material quality.<br></p><p></p>
2

Solution-Phase Synthesis of Earth Abundant Semiconductors for Photovoltaic Applications

Apurva Ajit Pradhan (17476641) 03 December 2023 (has links)
<p dir="ltr">Transitioning to a carbon-neutral future will require a broad portfolio of green energy generation and storage solutions. With the abundant availability of solar radiation across the Earth’s surface, energy generation from photovoltaics (PVs) will be an important part of this green energy portfolio. While silicon-based solar cells currently dominate the PV market, temperatures exceeding 1000 °C are needed for purification of silicon, and batch processing of silicon wafers limits how rapidly Si-based PV can be deployed. Furthermore, silicon’s indirect band gap necessitates absorber layers to exceed 100 µm thick, limiting its applications to rigid substrates.</p><p dir="ltr">Solution processed thin-film solar cells may allow for the realization of continuous, high-throughput manufacturing of PV modules. Thin-film absorber materials have direct band gaps, allowing them to absorb light more efficiently, and thus, they can be as thin as a few hundred nanometers and can be deposited on flexible substrates. Solution deposition of these absorber materials utilizing molecular precursor-based inks could be done in a roll-to-roll format, drastically increasing the throughput of PV manufacturing, and reducing installation costs. In this dissertation, solution processed synthesis and the characterization of two emerging direct band gap absorber materials consisting of earth abundant elements is discussed: the enargite phase of Cu<sub>3</sub>AsS<sub>4</sub> and the distorted perovskite phase of BaZrS<sub>3</sub>.</p><p dir="ltr">The enargite phase of Cu<sub>3</sub>AsS<sub>4</sub> (ENG) is an emerging PV material with a 1.42 eV band gap, making it an ideal single-junction absorber material for photovoltaic applications. Unfortunately, ENG-based PV devices have historically been shown to have low power conversion efficiencies, potentially due to defects in the material. A combined computational and experimental study was completed where DFT-based calculations from collaborators were used inform synthesis strategies to improve the defect properties of ENG utilizing new synthesis techniques, including silver alloying, to reduce the density of harmful defects.</p><p dir="ltr">Chalcogenide perovskites are viewed as a stable alternative to halide perovskites, with BaZrS<sub>3</sub> being the most widely studied. With a band gap of 1.8 eV, BaZrS<sub>3</sub> could be an excellent wide-bandgap partner for a silicon-based tandem solar cell.<sub> </sub>Historically, sputtering, and solid-state approaches have been used to synthesize chalcogenide perovskites, but these methods require synthesis temperatures exceeding 800 °C, making them incompatible with the glass substrates and rear-contact layers required to create a PV device. In this dissertation, these high synthesis temperatures are bypassed through the development of a solution-processed deposition technique.<sub> </sub>A unique chemistry was developed to create fully soluble molecular precursor inks consisting of alkaline earth metal dithiocarboxylates and transition metal dithiocarbamates for direct-to-substrate synthesis of BaZrS<sub>3</sub> and BaHfS<sub>3</sub> at temperatures below 600 °C.</p><p dir="ltr">However, many challenges must be overcome before chalcogenide perovskites can be used for the creation of photovoltaic devices including oxide and Ruddlesden-Popper secondary phases, isolated grain growth, and deep level defects. Nevertheless, the development of a moderate temperature solution-based synthesis route makes chalcogenide perovskite research accessible to labs which do not have high temperature furnaces or sputtering equipment, further increasing research interest in this quickly developing absorber material.</p>

Page generated in 0.0672 seconds